Mitigating Catastrophic Forgetting Through Knowledge Transfer and Weighted Loss Integration in Continual Learning

Lin Zhong, Qingya Sui, Yuki Todo, Jun Tang, Shangce Gao*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

抄録

Continual learning is an emerging field of artificial intelligence (AI) that focuses on equipping models with the ability to adjust to new tasks while retaining previously acquired knowledge. This capability is critical for the development of versatile AI systems. It enables AI to handle dynamic real-world data effectively. Traditional machine learning models often struggle to meet efficiency and resource demands when dealing with changing datasets. Thus, continual learning has become a promising alternative. In this paper, we introduce Knowledge Distillation and Combined Loss Enhanced Continual Learning Network (KDCL), which aims to mitigate catastrophic forgetting and balance the stability and plasticity of continual learning. KDCL combines knowledge distillation and combined loss functions to improve learning efficiency. Through experiments on the CIFAR-100 dataset, KDCL significantly improves the average accuracy compared to existing models, highlighting its capability to retain past knowledge and effectively integrate new information.

本文言語英語
ホスト出版物のタイトルICNSC 2024 - 21st International Conference on Networking, Sensing and Control
ホスト出版物のサブタイトルArtificial Intelligence for the Next Industrial Revolution
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9798350365221
DOI
出版ステータス出版済み - 2024
イベント21st International Conference on Networking, Sensing and Control, ICNSC 2024 - Hangzhou, 中国
継続期間: 2024/10/182024/10/20

出版物シリーズ

名前ICNSC 2024 - 21st International Conference on Networking, Sensing and Control: Artificial Intelligence for the Next Industrial Revolution

学会

学会21st International Conference on Networking, Sensing and Control, ICNSC 2024
国/地域中国
CityHangzhou
Period2024/10/182024/10/20

ASJC Scopus 主題領域

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • 制御と最適化
  • モデリングとシミュレーション
  • 感覚系
  • 器械工学

フィンガープリント

「Mitigating Catastrophic Forgetting Through Knowledge Transfer and Weighted Loss Integration in Continual Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル