Memetic Beluga Whale Optimization for Feature Selection

Jinrui Gao, Ziqian Wang, Baohang Zhang, Zhenyu Lei, Yuki Todo, Shangce Gao*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

4 被引用数 (Scopus)

抄録

With the increase in the dimensionality of data, feature selection has gained significant attention in recent times. Feature selection is a complex task due to the large search space involved. Swarm intelligence has recently been successfully used to address feature selection problems because of its global search ability. However, Beluga Whale Optimization (BWO), a swarm intelligence algorithm, is seldom used for feature selection due to its limited exploration ability at the end of iterations. Therefore, this paper proposes a new method called Memetic Beluga Whale Optimization (MBWO). By adding local perturbation and modifying search operators, MBWO can result in better performance in feature selection. Experiments comparing MBWO with other algorithms also show that the efficiency of the MBWO algorithm has significantly improved by these modifications.

本文言語英語
ホスト出版物のタイトルProceedings - 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1-5
ページ数5
ISBN(電子版)9798350326178
DOI
出版ステータス出版済み - 2023
イベント15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023 - Hangzhou, 中国
継続期間: 2023/08/262023/08/27

出版物シリーズ

名前Proceedings - 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023

学会

学会15th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2023
国/地域中国
CityHangzhou
Period2023/08/262023/08/27

ASJC Scopus 主題領域

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 人間とコンピュータの相互作用
  • 制御と最適化

フィンガープリント

「Memetic Beluga Whale Optimization for Feature Selection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル