Leveraging large language model to generate a novel metaheuristic algorithm with CRISPE framework

Rui Zhong, Yuefeng Xu, Chao Zhang, Jun Yu*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

3 被引用数 (Scopus)

抄録

In this paper, we introduce the large language model (LLM) ChatGPT-3.5 to automatically and intelligently generate a new metaheuristic algorithm (MA) according to the standard prompt engineering framework CRISPE (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment). The novel animal-inspired MA named Zoological Search Optimization (ZSO) draws inspiration from the collective behaviors of animals for solving continuous optimization problems. Specifically, the basic ZSO algorithm involves two search operators: the prey-predator interaction operator and the social flocking operator to balance exploration and exploitation well. Furthermore, we designed four variants of the ZSO algorithm with slight human-interacted adjustment. In numerical experiments, we comprehensively investigate the performance of ZSO-derived algorithms on CEC2014 benchmark functions, CEC2022 benchmark functions, and six engineering optimization problems. 20 popular and state-of-the-art MAs are employed as competitors. The experimental results and statistical analysis confirm the efficiency and effectiveness of ZSO-derived algorithms. At the end of this paper, we explore the prospects for the development of the metaheuristics community under the LLM era.

本文言語英語
ページ(範囲)13835-13869
ページ数35
ジャーナルCluster Computing
27
10
DOI
出版ステータス出版済み - 2024/12

ASJC Scopus 主題領域

  • ソフトウェア
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Leveraging large language model to generate a novel metaheuristic algorithm with CRISPE framework」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル