抄録
This study investigates the structural stability of small Pd@Pt core@shell octahedral nanoparticles (NPs) and their shell thickness dependent catalytic performance for p-chloronitrobenzene hydrogenation with H2. The 6-8 nm Pd@Pt octahedral NPs are prepared by a sequential reduction method, and the characterization results confirm that Pd@Pt octahedral NPs with one to four atomic Pt layers can be controllably synthesized. The Pd@Pt octahedral NPs with one atomic Pt layer demonstrate excellent structural stability with the maintenance of core-shell structures as well as high catalytic stability during cycle to cycle catalytic p-chloronitrobenzene hydrogenation reactions. The alumina-supported Pd@Pt octahedral NPs illustrate a superior catalytic performance relative to individual Pt and Pd and their physical mixtures. Theoretical calculations by density functional theory suggest that the unexpected structural stability for Pd@Pt octahedral NPs with thin Pt shells and their corresponding catalytic stability during hydrogenation reactions can be ascribed to the strong binding between Pt surfaces and reactants/products in catalytic reactions. The enhanced catalytic performance of Pd@Pt octahedral NPs possibly originates from the core-shell interaction, which adjusts the electronic state of surface Pt atoms to be suitable for selective p-chloronitrobenzene hydrogenation.
本文言語 | 英語 |
---|---|
ページ(範囲) | 1335-1343 |
ページ数 | 9 |
ジャーナル | ACS Catalysis |
巻 | 5 |
号 | 2 |
DOI | |
出版ステータス | 出版済み - 2015/02/06 |
ASJC Scopus 主題領域
- 触媒
- 化学一般