TY - JOUR
T1 - Involvements of the ABC protein ABCF2 and α-actinin-4 in regulation of cell volume and anion channels in human epithelial cells
AU - Ando-Akatsuka, Yuhko
AU - Shimizu, Takahiro
AU - Numata, Tomohiro
AU - Okada, Yasunobu
PY - 2012/10
Y1 - 2012/10
N2 - After osmotic swelling, cell volume is regulated by a process called regulatory volume decrease (RVD). Although actin cytoskeletons are known to play a regulatory role in RVD, it is not clear how actin-binding proteins are involved in the RVD process. In the present study, an involvement of an actin-binding protein, α-actinin-4 (ACTN4), in RVD was examined in human epithelial HEK293T cells. Overexpression of ACTN4 significantly facilitated RVD, whereas siRNA-mediated downregulation of endogenous ACTN4 suppressed RVD. When the cells were subjected to hypotonic stress, the content of ACTN4 increased in a 100,000×g pellet, which was sensitive to cytochalasin D pretreatment. Protein overlay assays revealed that ABCF2, a cytosolic member of the ABC transporter superfamily, is a binding partner of ACTN4. The ACTN4-ABCF2 interaction was markedly enhanced by hypotonic stimulation and required the NH 2-terminal region of ABCF2. Overexpression of ABCF2 suppressed RVD, whereas downregulation of ABCF2 facilitated RVD. We then tested whether ABCF2 has a suppressive effect on the activity of volume-sensitive outwardly rectifying anion channel (VSOR), which is known to mediate Cl - efflux involved in RVD, because another ABC transporter member, CFTR, was shown to suppress VSOR activity. Whole-cell VSOR currents were largely reduced by overexpression of ABCF2 and markedly enhanced by siRNA-mediated depletion of ABCF2. Thus, the present study indicates that ACTN4 acts as an enhancer of RVD, whereas ABCF2 acts as a suppressor of VSOR and RVD, and suggests that a swelling-induced interaction between ACTN4 and ABCF2 prevents ABCF2 from suppressing VSOR activity in the human epithelial cells. J. Cell. Physiol. 227: 3498-3510, 2012. © 2012 Wiley Periodicals, Inc.
AB - After osmotic swelling, cell volume is regulated by a process called regulatory volume decrease (RVD). Although actin cytoskeletons are known to play a regulatory role in RVD, it is not clear how actin-binding proteins are involved in the RVD process. In the present study, an involvement of an actin-binding protein, α-actinin-4 (ACTN4), in RVD was examined in human epithelial HEK293T cells. Overexpression of ACTN4 significantly facilitated RVD, whereas siRNA-mediated downregulation of endogenous ACTN4 suppressed RVD. When the cells were subjected to hypotonic stress, the content of ACTN4 increased in a 100,000×g pellet, which was sensitive to cytochalasin D pretreatment. Protein overlay assays revealed that ABCF2, a cytosolic member of the ABC transporter superfamily, is a binding partner of ACTN4. The ACTN4-ABCF2 interaction was markedly enhanced by hypotonic stimulation and required the NH 2-terminal region of ABCF2. Overexpression of ABCF2 suppressed RVD, whereas downregulation of ABCF2 facilitated RVD. We then tested whether ABCF2 has a suppressive effect on the activity of volume-sensitive outwardly rectifying anion channel (VSOR), which is known to mediate Cl - efflux involved in RVD, because another ABC transporter member, CFTR, was shown to suppress VSOR activity. Whole-cell VSOR currents were largely reduced by overexpression of ABCF2 and markedly enhanced by siRNA-mediated depletion of ABCF2. Thus, the present study indicates that ACTN4 acts as an enhancer of RVD, whereas ABCF2 acts as a suppressor of VSOR and RVD, and suggests that a swelling-induced interaction between ACTN4 and ABCF2 prevents ABCF2 from suppressing VSOR activity in the human epithelial cells. J. Cell. Physiol. 227: 3498-3510, 2012. © 2012 Wiley Periodicals, Inc.
UR - http://www.scopus.com/inward/record.url?scp=84862660953&partnerID=8YFLogxK
U2 - 10.1002/jcp.24050
DO - 10.1002/jcp.24050
M3 - 学術論文
C2 - 22252987
AN - SCOPUS:84862660953
SN - 0021-9541
VL - 227
SP - 3498
EP - 3510
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 10
ER -