TY - JOUR
T1 - Involvement of prokineticin 2-expressing neutrophil infiltration in 5-fluorouracil-induced aggravation of breast cancer metastasis to lung
AU - Sasaki, Soichiro
AU - Baba, Tomohisa
AU - Muranaka, Hayato
AU - Tanabe, Yamato
AU - Takahashi, Chiaki
AU - Matsugo, Seiichi
AU - Mukaida, Naofumi
N1 - Publisher Copyright:
© 2018 American Association for Cancer Research.
PY - 2018/7
Y1 - 2018/7
N2 - Adjuvant chemotherapy is used for human breast cancer patients, even after curative surgery of primary tumor, to prevent tumor recurrence primarily as a form of metastasis. However, anticancer drugs can accelerate metastasis in several mouse metastasis models. Hence, we examined the effects of postsurgical administration with 5-fluorouracil (5-FU), doxorubicin, and cyclophosphamide, on lung metastasis process, which developed after the resection of the primary tumor arising from the orthotopic injection of a mouse triple-negative breast cancer cell line, 4T1. Only 5-FU markedly increased the numbers and sizes of lung metastasis foci, with enhanced tumor cell proliferation and angiogenesis as evidenced by increases in Ki67-positive cell numbers and CD31-positive areas, respectively. 5-FU-mediated augmented lung metastasis was associated with increases in intrapulmonary neutrophil numbers and expression of neutrophilic chemokines, Cxcl1 and Cxcl2 in tumor cells, with few effects on intrapulmonary T-cell or macrophage numbers. 5-FU enhanced Cxcl1 and Cxcl2 expression in 4T1 cells in a NFkB-dependent manner. Moreover, the administration of a neutrophil-depleting antibody or a Cxcr2 antagonist, SB225002, significantly attenuated 5-FU-mediated enhanced lung metastasis with depressed neutrophil infiltration. Furthermore, infiltrating neutrophils and 4T1 cells abundantly expressed prokineticin-2 (Prok2) and its receptor, Prokr1, respectively. Finally, the administration of 5-FU after the resection of the primary tumor failed to augment lung metastasis in the mice receiving Prokr1-deleted 4T1 cells. Collectively, 5-FU can enhance lung metastasis by inducing tumor cells to produce Cxcl1 and Cxcl2, which induced the migration of neutrophils expressing Prok2 with a capacity to enhance 4T1 cell proliferation.
AB - Adjuvant chemotherapy is used for human breast cancer patients, even after curative surgery of primary tumor, to prevent tumor recurrence primarily as a form of metastasis. However, anticancer drugs can accelerate metastasis in several mouse metastasis models. Hence, we examined the effects of postsurgical administration with 5-fluorouracil (5-FU), doxorubicin, and cyclophosphamide, on lung metastasis process, which developed after the resection of the primary tumor arising from the orthotopic injection of a mouse triple-negative breast cancer cell line, 4T1. Only 5-FU markedly increased the numbers and sizes of lung metastasis foci, with enhanced tumor cell proliferation and angiogenesis as evidenced by increases in Ki67-positive cell numbers and CD31-positive areas, respectively. 5-FU-mediated augmented lung metastasis was associated with increases in intrapulmonary neutrophil numbers and expression of neutrophilic chemokines, Cxcl1 and Cxcl2 in tumor cells, with few effects on intrapulmonary T-cell or macrophage numbers. 5-FU enhanced Cxcl1 and Cxcl2 expression in 4T1 cells in a NFkB-dependent manner. Moreover, the administration of a neutrophil-depleting antibody or a Cxcr2 antagonist, SB225002, significantly attenuated 5-FU-mediated enhanced lung metastasis with depressed neutrophil infiltration. Furthermore, infiltrating neutrophils and 4T1 cells abundantly expressed prokineticin-2 (Prok2) and its receptor, Prokr1, respectively. Finally, the administration of 5-FU after the resection of the primary tumor failed to augment lung metastasis in the mice receiving Prokr1-deleted 4T1 cells. Collectively, 5-FU can enhance lung metastasis by inducing tumor cells to produce Cxcl1 and Cxcl2, which induced the migration of neutrophils expressing Prok2 with a capacity to enhance 4T1 cell proliferation.
UR - http://www.scopus.com/inward/record.url?scp=85049553914&partnerID=8YFLogxK
U2 - 10.1158/1535-7163.MCT-17-0845
DO - 10.1158/1535-7163.MCT-17-0845
M3 - 学術論文
C2 - 29643149
AN - SCOPUS:85049553914
SN - 1535-7163
VL - 17
SP - 1515
EP - 1525
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
IS - 7
ER -