TY - JOUR
T1 - Inorganic/whole-cell biohybrid photocatalyst for highly efficient hydrogen production from water
AU - Honda, Yuki
AU - Watanabe, Motonori
AU - Hagiwara, Hidehisa
AU - Ida, Shintaro
AU - Ishihara, Tatsumi
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017
Y1 - 2017
N2 - To obtain a clean hydrogen production system, we have developed an inorganic-bio hybrid photocatalyst system based on the combination of anatase TiO2, methylviologen (MV) as an electron mediator, and a whole-cell biocatalyst consisting of [FeFe]-hydrogenase and maturase gene-harboring recombinant Escherichia coli; however, the apparent quantum yield at 300 nm (AQY300) for hydrogen production was low (0.3%). The system consists of a two-step reaction: (1) photocatalytic MV reduction by TiO2, and (2) hydrogen production with reduced MV using a biocatalyst. The enhancement of step 1 under biocatalyst-friendly conditions was investigated in an attempt to further improve the reaction efficiency. Among the condition tested, the use of 100 mM Tris-HCl (pH 7), 150 mM NaCl, and 5% (v/v) glycerol with P-25 TiO2 especially enhanced the step 1 reaction by a 300-fold increase in the MV reduction rate compared with previously tested reaction condition (100 mM Tris-HCl (pH 7), 150 mM NaCl, 5% (v/v) glycerol, and 100 mM ascorbate with anatase TiO2). Under the enhanced step 1 reaction, AQY300 and AQY350 for photocatalytic MV reduction reached 60.8% and 52.2%, respectively. The enhanced step 1 reaction thus significantly improved the overall photocatalytic hydrogen productivity of the hybrid system and AQY300 and AQY350 reached 26.4% and 31.2%, respectively. The inorganic-whole-cell biohybrid system can therefore provide noble metal-free, efficient, and clean hydrogen production.
AB - To obtain a clean hydrogen production system, we have developed an inorganic-bio hybrid photocatalyst system based on the combination of anatase TiO2, methylviologen (MV) as an electron mediator, and a whole-cell biocatalyst consisting of [FeFe]-hydrogenase and maturase gene-harboring recombinant Escherichia coli; however, the apparent quantum yield at 300 nm (AQY300) for hydrogen production was low (0.3%). The system consists of a two-step reaction: (1) photocatalytic MV reduction by TiO2, and (2) hydrogen production with reduced MV using a biocatalyst. The enhancement of step 1 under biocatalyst-friendly conditions was investigated in an attempt to further improve the reaction efficiency. Among the condition tested, the use of 100 mM Tris-HCl (pH 7), 150 mM NaCl, and 5% (v/v) glycerol with P-25 TiO2 especially enhanced the step 1 reaction by a 300-fold increase in the MV reduction rate compared with previously tested reaction condition (100 mM Tris-HCl (pH 7), 150 mM NaCl, 5% (v/v) glycerol, and 100 mM ascorbate with anatase TiO2). Under the enhanced step 1 reaction, AQY300 and AQY350 for photocatalytic MV reduction reached 60.8% and 52.2%, respectively. The enhanced step 1 reaction thus significantly improved the overall photocatalytic hydrogen productivity of the hybrid system and AQY300 and AQY350 reached 26.4% and 31.2%, respectively. The inorganic-whole-cell biohybrid system can therefore provide noble metal-free, efficient, and clean hydrogen production.
KW - Inorganic-bio hybrid
KW - Photocatalysis
KW - Water splitting
KW - Whole-cell biocatalyst
KW - [FeFe]-hydrogenase
UR - http://www.scopus.com/inward/record.url?scp=85017448548&partnerID=8YFLogxK
U2 - 10.1016/j.apcatb.2017.04.015
DO - 10.1016/j.apcatb.2017.04.015
M3 - 学術論文
AN - SCOPUS:85017448548
SN - 0926-3373
VL - 210
SP - 400
EP - 406
JO - Applied Catalysis B: Environmental
JF - Applied Catalysis B: Environmental
ER -