抄録
SnO2 microwires, nanowires and rice-shaped nanoparticles were synthesized by a thermal evaporation method. The diameters of microwire and nanowire were 2 μm and 50-100 nm, respectively, with approximately the same length (∼20 μm). The size of nanoparticles was about 100 nm. It was confirmed that the as-synthesized products have SnO2 crystalline rutile structure. The sensing ability of SnO2 particle and wire-like structure configured as gas sensors was measured. A comparison between the particle and wire-like structure sensors revealed that the latter have numerous advantages in terms of reliability and high sensitivity. Although its high surface-to-volume ratio, the nanoparticle sensor exhibited the lowest sensitivity. The high surface-to-volume ratio and low density of grain boundaries is the best way to improve the sensitivity of SnO2 gas sensors, as in case of nanowire sensor which exhibited a dramatic improvement in sensitivity to NO2 gas.
本文言語 | 英語 |
---|---|
ページ(範囲) | 11-16 |
ページ数 | 6 |
ジャーナル | Sensors and Actuators, B: Chemical |
巻 | 153 |
号 | 1 |
DOI | |
出版ステータス | 出版済み - 2011/03/31 |
ASJC Scopus 主題領域
- 電子材料、光学材料、および磁性材料
- 器械工学
- 凝縮系物理学
- 表面、皮膜および薄膜
- 金属および合金
- 電子工学および電気工学
- 材料化学