TY - JOUR
T1 - In vivo depletion of CD206+ M2 macrophages exaggerates lung injury in endotoxemic mice
AU - Kambara, Kenta
AU - Ohashi, Wakana
AU - Tomita, Kengo
AU - Takashina, Michinori
AU - Fujisaka, Shiho
AU - Hayashi, Ryuji
AU - Mori, Hisashi
AU - Tobe, Kazuyuki
AU - Hattori, Yuichi
N1 - Publisher Copyright:
© 2015 American Society for Investigative Pathology Published by Elsevier Inc. All rights reserved.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - Although phenotypically polarized macrophages are now generally classified into two major subtypes termed proinflammatory M1 and anti-inflammatory M2 macrophages, a contributory role of lung M2 macrophages in the pathophysiological features of acute lung injury is not fully understood. Herein, we show in an endotoxemic murine model that M2 macrophages serve as key anti-inflammatory cells that play a regulatory role in the severity of lung injury. To study whether M2 macrophages can modify inflammation, we depleted M2 macrophages from lungs of CD206-diphtheria toxin (DT) receptor transgenic (Tg) mice during challenge with lipopolysaccharide. The i.p. Administration of DT depleted CD206-positive cells in bronchoalveolar lavage fluid. The use of M2 macrophage markers Ym1 and arginase-1 identified pulmonary CD206-positive cells as M2 macrophages. A striking increase in neutrophils in bronchoalveolar lavage fluid cell contents was found in DT-treated CD206-DT receptor Tg mice. In CD206-DT receptor Tg mice given DT, endotoxin challenge exaggerated lung inflammation, including up-regulation of proinflammatory cytokines and increased histological lung damage, but the endotoxemia-induced increase in NF-κB activity was significantly reduced, suggesting that M2 phenotype-dependent counteraction of inflammatory insult cannot be attributed to the inhibition of the NF-κB pathway. Our results indicate a critical role of CD206-positive pulmonary macrophages in triggering inflammatory cascade during endotoxemic lung inflammation.
AB - Although phenotypically polarized macrophages are now generally classified into two major subtypes termed proinflammatory M1 and anti-inflammatory M2 macrophages, a contributory role of lung M2 macrophages in the pathophysiological features of acute lung injury is not fully understood. Herein, we show in an endotoxemic murine model that M2 macrophages serve as key anti-inflammatory cells that play a regulatory role in the severity of lung injury. To study whether M2 macrophages can modify inflammation, we depleted M2 macrophages from lungs of CD206-diphtheria toxin (DT) receptor transgenic (Tg) mice during challenge with lipopolysaccharide. The i.p. Administration of DT depleted CD206-positive cells in bronchoalveolar lavage fluid. The use of M2 macrophage markers Ym1 and arginase-1 identified pulmonary CD206-positive cells as M2 macrophages. A striking increase in neutrophils in bronchoalveolar lavage fluid cell contents was found in DT-treated CD206-DT receptor Tg mice. In CD206-DT receptor Tg mice given DT, endotoxin challenge exaggerated lung inflammation, including up-regulation of proinflammatory cytokines and increased histological lung damage, but the endotoxemia-induced increase in NF-κB activity was significantly reduced, suggesting that M2 phenotype-dependent counteraction of inflammatory insult cannot be attributed to the inhibition of the NF-κB pathway. Our results indicate a critical role of CD206-positive pulmonary macrophages in triggering inflammatory cascade during endotoxemic lung inflammation.
UR - http://www.scopus.com/inward/record.url?scp=84918777240&partnerID=8YFLogxK
U2 - 10.1016/j.ajpath.2014.09.005
DO - 10.1016/j.ajpath.2014.09.005
M3 - 学術論文
C2 - 25447055
AN - SCOPUS:84918777240
SN - 0002-9440
VL - 185
SP - 162
EP - 171
JO - American Journal of Pathology
JF - American Journal of Pathology
IS - 1
ER -