Improved pattern recognition with complex artificial immune system

Wei Wang*, Shangce Gao, Zheng Tang

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

13 被引用数 (Scopus)

抄録

In this paper, we introduce the application of transformation pattern recognition based on a complex artificial immune system. The key feature of the complex artificial immune system is the introduction of complex data representation. We use complex numbers as the data representation instead of binary numbers used before, besides the weight between different layers. The complex partial autocorrelation coefficients of input antigen which are considered as the antigen presentation are calculated in major histocompatibility complex (MHC) layer of the complex artificial immune system. In the simulations, the transformation of patterns, such as translation, scale or rotation, are recognized in much higher accuracy, and it has obviously higher noise tolerance ability than traditional real artificial immune system and even the complex PARCOR model.

本文言語英語
ページ(範囲)1209-1217
ページ数9
ジャーナルSoft Computing
13
12
DOI
出版ステータス出版済み - 2009

ASJC Scopus 主題領域

  • ソフトウェア
  • 理論的コンピュータサイエンス
  • 幾何学とトポロジー

フィンガープリント

「Improved pattern recognition with complex artificial immune system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル