Improved chaotic gravitational search algorithms for global optimization

Dongmei Shen, Tao Jiang, Wei Chen, Qian Shi, Shangce Gao

研究成果: 書籍の章/レポート/会議録会議への寄与査読

32 被引用数 (Scopus)

抄録

Gravitational search algorithm (GSA) has gained increasing attention in dealing with complex optimization problems. Nevertheless it still has some drawbacks, such as slow convergence and the tendency to become trapped in local minima. Chaos generated by the logistic map, with the properties of ergodicity and stochasticity, has been used to combine with GSA to enhance its searching performance. In this work, other four different chaotic maps are utilized to further improve the searching capacity of the hybrid chaotic gravitational search algorithm (CGSA), and six widely used benchmark optimization instances are chosen from the literature as the test suit. Simulation results indicate that all five chaotic maps can improve the performance of the original GSA in terms of the solution quality and convergence speed. Moreover, the four newly incorporated chaotic maps exhibit better influence on improving the performance of GSA than the logistic map, suggesting that the hybrid searching dynamics of CGSA is significantly effected by the distribution characteristics of chaotic maps.

本文言語英語
ホスト出版物のタイトル2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1220-1226
ページ数7
ISBN(電子版)9781479974924
DOI
出版ステータス出版済み - 2015/09/10
イベントIEEE Congress on Evolutionary Computation, CEC 2015 - Sendai, 日本
継続期間: 2015/05/252015/05/28

出版物シリーズ

名前2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings

学会

学会IEEE Congress on Evolutionary Computation, CEC 2015
国/地域日本
CitySendai
Period2015/05/252015/05/28

ASJC Scopus 主題領域

  • コンピュータ サイエンスの応用
  • 計算数学

フィンガープリント

「Improved chaotic gravitational search algorithms for global optimization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル