Hybrid feature selection algorithm mRMR-ICA for cancer classification from microarray gene expression data

Shuaiqun Wang*, Wei Kong, Aorigele, Jin Deng, Shangce Gao, Weiming Zeng

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

15 被引用数 (Scopus)

抄録

Aims and Objective: Redundant information of microarray gene expression data makes it difficult for cancer classification. Hence, it is very important for researchers to find appropriate ways to select informative genes for better identification of cancer. This study was undertaken to present a hybrid feature selection method mRMR-ICA which combines minimum redundancy maximum relevance (mRMR) with imperialist competition algorithm (ICA) for cancer classification in this paper. Materials and Methods: The presented algorithm mRMR-ICA utilizes mRMR to delete redundant genes as preprocessing and provide the small datasets for ICA for feature selection. It will use support vector machine (SVM) to evaluate the classification accuracy for feature genes. The fitness function includes classification accuracy and the number of selected genes. Results: Ten benchmark microarray gene expression datasets are used to test the performance of mRMR-ICA. Experimental results including the accuracy of cancer classification and the number of informative genes are improved for mRMR-ICA compared with the original ICA and other evolutionary algorithms. Conclusion: The comparison results demonstrate that mRMR-ICA can effectively delete redundant genes to ensure that the algorithm selects fewer informative genes to get better classification results. It also can shorten calculation time and improve efficiency.

本文言語英語
ページ(範囲)420-430
ページ数11
ジャーナルCombinatorial Chemistry and High Throughput Screening
21
6
DOI
出版ステータス出版済み - 2018

ASJC Scopus 主題領域

  • 創薬
  • コンピュータ サイエンスの応用
  • 有機化学

フィンガープリント

「Hybrid feature selection algorithm mRMR-ICA for cancer classification from microarray gene expression data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル