Handling Class Imbalance in Black-Box Unsupervised Domain Adaptation with Synthetic Minority Over-Sampling

Yawen Zou*, Chunzhi Gu, Zi Wang, Guang Li, Jun Yu, Chao Zhang

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

抄録

Black-box unsupervised domain adaptation (BBUDA) is a challenging task that transfers knowledge from the source domain to the target domain without access to the source data and source model, thus alleviating public concerns about data security. However, BBUDA requires the source model to function as a black-box predictor for the target data, and the pseudo-labels often exhibit class imbalance, which degrades the performance. To tackle this problem, we propose employing the synthetic minority oversampling technique (SMOTE) and adaptive sampling to rebalance data. Given that predictions often contain errors, we first select reliable high-confidence data before using SMOTE to generate synthetic samples for the minority class. Second, we incrementally select high-confidence data from the remaining low-confidence data with an adaptive sampling rate for each class, in which the minority class (with the fewest samples) is assigned a higher sampling rate and the majority class (with the most samples) is assigned a lower sampling rate. The experimental results demonstrate that our method can mitigate the class imbalance and further improve the performance of the target model.

本文言語英語
ホスト出版物のタイトル2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9798331529543
DOI
出版ステータス出版済み - 2024
イベント2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024 - Tokyo, 日本
継続期間: 2024/12/082024/12/11

出版物シリーズ

名前2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024

学会

学会2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024
国/地域日本
CityTokyo
Period2024/12/082024/12/11

ASJC Scopus 主題領域

  • コンピュータ ネットワークおよび通信
  • コンピュータ ビジョンおよびパターン認識
  • ハードウェアとアーキテクチャ
  • 信号処理
  • メディア記述

フィンガープリント

「Handling Class Imbalance in Black-Box Unsupervised Domain Adaptation with Synthetic Minority Over-Sampling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル