GSK-3β/CREB axis mediates IGF-1-induced ECM/adhesion molecule expression, cell cycle progression and monolayer permeability in retinal capillary endothelial cells: Implications for diabetic retinopathy

Takhellambam S. Devi, Lalit P. Singh*, Ken Ichi Hosoya, Tetsuya Terasaki

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

26 被引用数 (Scopus)

抄録

Various growth factors and cytokines are implicated in endothelial dysfunction and blood-retinal barrier (BRB) breakdown in early diabetic retinopathy (DR). However, cellular and molecular mechanisms that may underlie the pathology of DR are not fully understood yet. We therefore examined the effect of insulin-like growth factor (IGF)-1 on ECM/adhesion molecule expression, cell cycle regulation and monolayer permeability in an endothelial cell line (TR-iBRB2). We investigate whether the action of IGF-1 (1) involves glycogen synthase kinase 3beta (GSK-3β) and cAMP responsive transcription factor (CREB) and (2) alters ECM/adhesion molecule gene expression. Treatment of TR-iBRB2 cell with IGF-1 (100. ng/ml for 0-24. h) increases phosphorylation of (i) Akt Thr308, and its substrates including GSK-3β at Ser9, which inactivates its kinase function, and (ii) CREB at Ser133 (activation). These phosphorylations correlate positively with enhanced expression of CREB targets such as ECM protein fibronectin and cell cycle progression factor cyclin D1. However, stable transfection of a mutant GSK3β(S9A) or a dominant negative K-CREB in TR-iBRB2 prevents IGF-1-induced fibronectin and cyclin D1 expression. Furthermore, IGF-1 reduces the level of intercellular adherence molecule VE-cadherin and increases monolayer permeability in TR-iBRB2 cells when measured by FITC-dextran leakage. The effect of IGF-1 on VE-cadherin and membrane permeability is absent in TR-iBRB2 cells expressing the GSK-3β(S9A). Similarly, K-CREB reverses IGF-1 down-regulation of VE-cadherin and up-regulation of fibronectin. These results indicate that GSK-3β/CREB axis alters ECM/adhesion molecule expression and cell cycle progression in retinal endothelial cells, and may potentially contribute to endothelial dysfunction and BRB leakage in DR.

本文言語英語
ページ(範囲)1080-1088
ページ数9
ジャーナルBiochimica et Biophysica Acta - Molecular Basis of Disease
1812
9
DOI
出版ステータス出版済み - 2011/09

ASJC Scopus 主題領域

  • 分子医療
  • 分子生物学

フィンガープリント

「GSK-3β/CREB axis mediates IGF-1-induced ECM/adhesion molecule expression, cell cycle progression and monolayer permeability in retinal capillary endothelial cells: Implications for diabetic retinopathy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル