Evolutionary origins of synchronization for integrating information in neurons

Takashi Shibata*, Noriaki Hattori, Hisao Nishijo, Tsutomu Takahashi, Yuko Higuchi, Satoshi Kuroda, Kaoru Takakusaki

*この論文の責任著者

研究成果: ジャーナルへの寄稿簡易調査査読

抄録

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum. Chemical synchronization involves the diffuse release of neurotransmitters like dopamine and acetylcholine, causing transmission delays of several milliseconds. Electromagnetic synchronization encompasses action potentials, electrical gap junctions, and ephaptic coupling. Electrical gap junctions enable rapid synchronization within cortical GABAergic networks, while ephaptic coupling allows structures like axon bundles to synchronize through extracellular electromagnetic fields, surpassing the speed of chemical processes. Quantum synchronization is hypothesized to involve ion coherence during ion channel passage and the entanglement of photons within the myelin sheath. Unlike the finite-time synchronization seen in chemical and electromagnetic processes, quantum entanglement provides instantaneous non-local coherence states. Neurons might have evolved from slower chemical diffusion to rapid temporal synchronization, with ion passage through gap junctions within cortical GABAergic networks potentially facilitating both fast gamma band synchronization and quantum coherence. This mini-review compiles literature on these three synchronization types, offering new insights into the physiological mechanisms that address the binding problem in neuron assemblies.

本文言語英語
論文番号1525816
ジャーナルFrontiers in Cellular Neuroscience
18
DOI
出版ステータス出版済み - 2024

ASJC Scopus 主題領域

  • 細胞および分子神経科学

フィンガープリント

「Evolutionary origins of synchronization for integrating information in neurons」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル