Evolutionary Computation with Distance-Based Pretreatment for Multi-modal Problems

Yuefeng Xu, Rui Zhong, Chao Zhang, Jun Yu*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

抄録

multi-modal optimization problems (MMOPs) are pivotal in industrial production and scientific research. Unlike standard optimization problems, MMOPs aim to identify multiple global solutions, offering users a variety of optimal choices. However, traditional optimization algorithms often encounter difficulties when tackling MMOPs. To overcome this challenge, we propose a pretreatment mechanism based on individual distribution information, which is devised to enhance optimization algorithms’ performance while preserving its convergence capability. We comprehensively evaluate our method’s efficacy using 20 MMOPs from the CEC2013 benchmark suite, comparing it against the widely recognized “crowding method,” a prevalent niching strategy. Our findings unequivocally showcase the effectiveness of the proposed mechanism in expediting MMOP optimization. Furthermore, we delve into an analysis elucidating the underlying reasons behind our proposal’s effectiveness for MMOPs and discuss potential topics for future enhancements.

本文言語英語
ホスト出版物のタイトルAdvances in Swarm Intelligence - 15th International Conference on Swarm Intelligence, ICSI 2024, Proceedings
編集者Ying Tan, Yuhui Shi
出版社Springer Science and Business Media Deutschland GmbH
ページ313-322
ページ数10
ISBN(印刷版)9789819771806
DOI
出版ステータス出版済み - 2024
イベント15th International Conference on Swarm Intelligence, ICSI 2024 - Xining, 中国
継続期間: 2024/08/232024/08/26

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14788 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

学会

学会15th International Conference on Swarm Intelligence, ICSI 2024
国/地域中国
CityXining
Period2024/08/232024/08/26

ASJC Scopus 主題領域

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Evolutionary Computation with Distance-Based Pretreatment for Multi-modal Problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル