Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance

Tsutomu Wada*, Akari Ishikawa, Eri Watanabe, Yuto Nakamura, Yusuke Aruga, Hayate Hasegawa, Yasuhiro Onogi, Hiroe Honda, Yoshinori Nagai, Kiyoshi Takatsu, Yoko Ishii, Masakiyo Sasahara, Daisuke Koya, Hiroshi Tsuneki, Toshiyasu Sasaoka

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

51 被引用数 (Scopus)

抄録

Obesity-associated activation of the renin-angiotensin-aldosterone system is implicated in the pathogenesis of insulin resistance; however, influences of mineralocorticoid receptor (MR) inhibition remain unclear. Therefore, we aimed to clarify the anti-inflammatory mechanisms of MR inhibition using eplerenone, a selective MR antagonist, in C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks. Eplerenone prevented excessive body weight gain and fat accumulation, ameliorated glucose intolerance and insulin resistance and enhanced energy metabolism. In the epididymal white adipose tissue (eWAT), eplerenone prevented obesity-induced accumulation of F4/80+CD11c+CD206--M1-adipose tissue macrophage (ATM) and reduction of F4/80+CD11c-CD206+-M2-ATM. Interestingly, M1-macrophage exhibited lower expression levels of MR, compared with M2-macrophage, in the ATM of eWAT and in vitro-polarized bone marrow-derived macrophages (BMDM). Importantly, eplerenone and MR knockdown attenuated the increase in the expression levels of proIl1b, Il6 and Tnfa, in the eWAT and liver of HFD-fed mice and LPS-stimulated BMDM. Moreover, eplerenone suppressed IL1b secretion from eWAT of HFD-fed mice. To reveal the anti-inflammatory mechanism, we investigated the involvement of NLRP3-inflammasome activation, a key process of IL1b overproduction. Eplerenone suppressed the expression of the inflammasome components, Nlrp3 and Caspase1, in the eWAT and liver. Concerning the second triggering factors, ROS production and ATP- and nigericin-induced IL1b secretion were suppressed by eplerenone in the LPS-primed BMDM. These results indicate that eplerenone inhibited both the priming and triggering signals that promote NLRP3-inflammasome activation. Therefore, we consider MR to be a crucial target to prevent metabolic disorders by suppressing inflammasome-mediated chronic inflammation in the adipose tissue and liver under obese conditions.

本文言語英語
ページ(範囲)179-191
ページ数13
ジャーナルJournal of Endocrinology
235
3
DOI
出版ステータス出版済み - 2017/12/01

ASJC Scopus 主題領域

  • 内分泌学、糖尿病および代謝内科学
  • 内分泌学

フィンガープリント

「Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル