TY - JOUR
T1 - Enhanced light-harvesting capability of a panchromatic Ru(II) sensitizer based on π-extended terpyridine with a 4-methylstylryl group for dye-sensitized solar cells
AU - Numata, Youhei
AU - Singh, Surya Prakash
AU - Islam, Ashraful
AU - Iwamura, Munetaka
AU - Imai, Atsushi
AU - Nozaki, Koichi
AU - Han, Liyuan
PY - 2013/4/12
Y1 - 2013/4/12
N2 - A novel Ru π-expanded terpyridyl sensitizer, referred to as HIS-2, is prepared based on the molecular design strategy of substitution with a moderately electron-donating 4-methylstyryl group onto the terpyridyl ligand. The HIS-2 dye exhibits a slightly increased metal-to-ligand charge transfer (MLCT) absorption at around 600 nm and an intense π-π* absorption in the UV region compared with a black dye. Density functional theory calculations reveal that the lowest unoccupied molecular orbital (LUMO) is distributed over the terpyridine and 4-methylstyryl moieties, which enhances the light-harvesting capability and is appropriate for smooth electron injection from the dye to the TiO2 conduction band. The incident photon-to-electricity conversion efficiency spectrum of HIS-2 exhibits better photoresponse compared with black dye over the whole spectral region as a result of the extended π-conjugation. A DSC device based on black dye gives a short-circuit current (JSC) of 21.28 mA cm-2, open-circuit voltage (VOC) of 0.69 V, and fill factor (FF) of 0.72, in an overall conversion efficiency (η) of 10.5%. In contrast, an HIS-2 based cell gives a higher JSC value of 23.07 mA cm-2 with VOC of 0.68 V, and FF of 0.71, and owing to the higher JSC value of HIS-2, an improved η value of 11.1% is achieved. Moderate electron-donating substituents are important for enhancement of the light harvesting capability of Ru(II) sensitizers. Substitution of a terpyridyl ligand with a 4-methylstyryl group increases the molecular absorption coefficient from the UV to the NIR region compared with black dye owing to the wider lowest unoccupied molecular orbital (LUMO) distributed over the terpyridyl and extended π-conjugation. The intense absorption gives a high JSC of 23.07 mA cm-2, and a resulting overall conversion efficiency of 11.1%.
AB - A novel Ru π-expanded terpyridyl sensitizer, referred to as HIS-2, is prepared based on the molecular design strategy of substitution with a moderately electron-donating 4-methylstyryl group onto the terpyridyl ligand. The HIS-2 dye exhibits a slightly increased metal-to-ligand charge transfer (MLCT) absorption at around 600 nm and an intense π-π* absorption in the UV region compared with a black dye. Density functional theory calculations reveal that the lowest unoccupied molecular orbital (LUMO) is distributed over the terpyridine and 4-methylstyryl moieties, which enhances the light-harvesting capability and is appropriate for smooth electron injection from the dye to the TiO2 conduction band. The incident photon-to-electricity conversion efficiency spectrum of HIS-2 exhibits better photoresponse compared with black dye over the whole spectral region as a result of the extended π-conjugation. A DSC device based on black dye gives a short-circuit current (JSC) of 21.28 mA cm-2, open-circuit voltage (VOC) of 0.69 V, and fill factor (FF) of 0.72, in an overall conversion efficiency (η) of 10.5%. In contrast, an HIS-2 based cell gives a higher JSC value of 23.07 mA cm-2 with VOC of 0.68 V, and FF of 0.71, and owing to the higher JSC value of HIS-2, an improved η value of 11.1% is achieved. Moderate electron-donating substituents are important for enhancement of the light harvesting capability of Ru(II) sensitizers. Substitution of a terpyridyl ligand with a 4-methylstyryl group increases the molecular absorption coefficient from the UV to the NIR region compared with black dye owing to the wider lowest unoccupied molecular orbital (LUMO) distributed over the terpyridyl and extended π-conjugation. The intense absorption gives a high JSC of 23.07 mA cm-2, and a resulting overall conversion efficiency of 11.1%.
KW - Ru sensitizer
KW - dye-sensitized solar cells
KW - mesoporous TiO film
KW - structure-property relationship
UR - http://www.scopus.com/inward/record.url?scp=84875821804&partnerID=8YFLogxK
U2 - 10.1002/adfm.201202504
DO - 10.1002/adfm.201202504
M3 - 学術論文
AN - SCOPUS:84875821804
SN - 1616-301X
VL - 23
SP - 1817
EP - 1823
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 14
ER -