Development of Silicalite-1 encapsulated Cu-ZnO catalysts for methanol synthesis by CO2 hydrogenation

Ryokuto Kanomata, Koki Awano, Hiroyasu Fujitsuka, Kentaro Kimura, Shuhei Yasuda, Raquel Simancas, Samya Bekhti, Toru Wakihara, Toshiyuki Yokoi, Teruoki Tago*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

7 被引用数 (Scopus)

抄録

Converting CO2 into fuels and valuable chemicals such as methanol has been gaining significant attention as a favorable solution for reducing greenhouse gas emissions. Although Cu-ZnO-based catalysts are promising candidates for this reaction since methanol is selectively produced at the Cu-ZnO interface, Cu are not stable at elevated temperatures (500–600 K), leading to decrease in the surface areas of Cu and Cu-ZnO interface due to thermal aggregation of Cu. Furthermore, the generation of H2O as a by-product in the CO2 hydrogenation does not only accelerate the aggregation of Cu, but also inhibits an intermediate (formate species) formation for methanol. This paper reports the development of a novel catalyst, annotated as CuPS@S-1 by immobilizing Cu phyllosilicate (CuPS) as the Cu source within hydrophobic zeolite of Silicalite-1 particles (S-1). Cu@S-1 was obtained after the reduction CuPS@S-1 and the size of the Cu particles was approximately 2.4 nm. Cu@S-1 exhibited a higher CO2 hydrogenation activity and methanol selectivity than Cu/S-1 prepared by an impregnation method. To further improve the methanol production activity, ZnO was loaded onto Cu@S-1 to form a Cu-ZnO interface. ZnO/Cu@S-1 was obtained by the impregnation of CuPS@S-1 powder with an ethanol solution containing zinc acetate, followed by calcination and reduction. The obtained catalyst exhibited a better methanol production yield where the space–time yield for methanol based on the Cu weight exceeded 1200 mgmethanol gCu−1h−1.

本文言語英語
論文番号149896
ジャーナルChemical Engineering Journal
485
DOI
出版ステータス出版済み - 2024/04/01

ASJC Scopus 主題領域

  • 化学一般
  • 環境化学
  • 化学工学一般
  • 産業および生産工学

フィンガープリント

「Development of Silicalite-1 encapsulated Cu-ZnO catalysts for methanol synthesis by CO2 hydrogenation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル