Derivation of Multicomponent Lattice Boltzmann Equations by Introducing a Nonequilibrium Distribution Function into the Maxwell Iteration Based on the Convective Scaling

Keiichi Yamamoto*, Takeshi Seta

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

6 被引用数 (Scopus)

抄録

This study firstly proposes a simple recursive method for deriving the macroscale equations from lattice Boltzmann equations. Similar to the Maxwell iteration based on the convective scaling, this method is used to expand the lattice Boltzmann (LB) equations with the time step δt. It is characterised by the incorporation of a nonequilibrium distribution function not appearing in the Maxwell iteration to considerably reduce the mathematical manipulations required. Next, we define the kinetic equations of a multicomponent (i.e. N-component) system based on a model using the Maxwell velocity distribution law for the equilibrium distribution function appearing in the cross-collision terms. Then, using this simple recursive method, we derive the generalized Stefan–Maxwell equation, which is the macroscale governing equation of a multicomponent system while ensuring the mass conservation. In short, our objective is to firstly define the kinetic equations of a multi-component system having a clear physical interpretation and then formulate the LB equations of any N-component system deductively.

本文言語英語
論文番号4
ジャーナルJournal of Statistical Physics
182
1
DOI
出版ステータス出版済み - 2021/01

ASJC Scopus 主題領域

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Derivation of Multicomponent Lattice Boltzmann Equations by Introducing a Nonequilibrium Distribution Function into the Maxwell Iteration Based on the Convective Scaling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル