Dendritic SE-ResNet Learning for Bioinformatic Classification

Yi Ou*, Yaotong Song, Zhipeng Liu, Zhiming Zhang, Jun Tang, Shangce Gao*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

抄録

The construction of neural networks is a widely adopted approach in deep learning for tackling classification problems, aiming to emulate the functionality of human neurons. However, many existing models that simulate neuron structures do not fully consider the non-linear relationships between dendrites and axons during signal transmission. To overcome this limitation, we introduce a novel deep learning model named dendritic SE-ResNet (DEN). This model simulates the construction of nonlinear signaling between dendrites and axons by combining biological attention mechanisms and the biologically interpretable neuron. In comparison to the original network, the proposed DEN exhibits a greater biological resemblance to the functioning of neurons. Experimental results further demonstrate that DEN outperforms some state-of-the-art deep neural network models in classification tasks. Compared to those models, our model attains a classification accuracy of 91.6%, marking an advancement of 2.7% over SE-ResNet. Additionally, our model demonstrates an F1-score of 92.4%, exhibiting an improvement of 4.4% compared to SE-ResNet.

本文言語英語
ホスト出版物のタイトルBioinformatics Research and Applications - 20th International Symposium, ISBRA 2024, Proceedings
編集者Wei Peng, Zhipeng Cai, Pavel Skums
出版社Springer Science and Business Media Deutschland GmbH
ページ139-150
ページ数12
ISBN(印刷版)9789819751273
DOI
出版ステータス出版済み - 2024
イベント20th International Symposium on Bioinformatics Research and Applications, ISBRA 2024 - Kunming, 中国
継続期間: 2024/07/192024/07/21

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
14954 LNBI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

学会

学会20th International Symposium on Bioinformatics Research and Applications, ISBRA 2024
国/地域中国
CityKunming
Period2024/07/192024/07/21

ASJC Scopus 主題領域

  • 理論的コンピュータサイエンス
  • コンピュータサイエンス一般

フィンガープリント

「Dendritic SE-ResNet Learning for Bioinformatic Classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル