Dendritic Learning and Miss Region Detection-Based Deep Network for Multi-scale Medical Segmentation

Lin Zhong, Zhipeng Liu, Houtian He, Zhenyu Lei, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

2 被引用数 (Scopus)

抄録

Automatic identification and segmentation of lesions in medical images has become a focus area for researchers. Segmentation for medical image provides professionals with a clearer and more detailed view by accurately identifying and isolating specific tissues, organs, or lesions from complex medical images, which is crucial for early diagnosis of diseases, treatment planning, and efficacy tracking. This paper introduces a deep network based on dendritic learning and missing region detection (DMNet), a new approach to medical image segmentation. DMNet combines a dendritic neuron model (DNM) with an improved SegNet framework to improve segmentation accuracy, especially in challenging tasks such as breast lesion and COVID-19 CT scan analysis. This work provides a new approach to medical image segmentation and confirms its effectiveness. Experiments have demonstrated that DMNet outperforms classic and latest methods in various performance metrics, proving its effectiveness and stability in medical image segmentation tasks.

本文言語英語
ページ(範囲)2073-2085
ページ数13
ジャーナルJournal of Bionic Engineering
21
4
DOI
出版ステータス出版済み - 2024/07

ASJC Scopus 主題領域

  • バイオテクノロジー
  • バイオエンジニアリング
  • 生物理学

フィンガープリント

「Dendritic Learning and Miss Region Detection-Based Deep Network for Multi-scale Medical Segmentation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル