抄録
Convolutional neural network (CNN), as one of the mainstream deep learning models, has achieved great success in image recognition. All neurons used in CNN are based on the McCulloch-Pitts model, which is over-simplified. To further improve CNN's learning capacity, this paper proposes a novel dendritic CNN (DCNN), which considers the nonlinear information processing functions of dendrites in a single neuron. The superiority of DCNN is confirmed based on four widely used image recognition tasks.
本文言語 | 英語 |
---|---|
ページ(範囲) | 302-304 |
ページ数 | 3 |
ジャーナル | IEEJ Transactions on Electrical and Electronic Engineering |
巻 | 17 |
号 | 2 |
DOI | |
出版ステータス | 出版済み - 2022/02 |
ASJC Scopus 主題領域
- 電子工学および電気工学