DeepfakeUCL: Deepfake Detection via Unsupervised Contrastive Learning

Sheldon Fung, Xuequan Lu*, Chao Zhang, Chang Tsun Li

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

42 被引用数 (Scopus)

抄録

Face deepfake detection has seen impressive results recently. Nearly all existing deep learning techniques for face deepfake detection are fully supervised and require labels during training. In this paper, we design a novel deepfake detection method via unsupervised contrastive learning. We first generate two different transformed versions of an image and feed them into two sequential sub-networks, i.e., an encoder and a projection head. The unsupervised training is achieved by maximizing the correspondence degree of the outputs of the projection head. To evaluate the detection performance of our unsupervised method, we further use the unsupervised features to train an efficient linear classification network. Extensive experiments show that our unsupervised learning method enables comparable detection performance to state-of-the-art supervised techniques, in both the intra- and inter-dataset settings. We also conduct ablation studies for our method.

本文言語英語
ホスト出版物のタイトルIJCNN 2021 - International Joint Conference on Neural Networks, Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9780738133669
DOI
出版ステータス出版済み - 2021/07/18
イベント2021 International Joint Conference on Neural Networks, IJCNN 2021 - Virtual, Shenzhen, 中国
継続期間: 2021/07/182021/07/22

出版物シリーズ

名前Proceedings of the International Joint Conference on Neural Networks
2021-July

学会

学会2021 International Joint Conference on Neural Networks, IJCNN 2021
国/地域中国
CityVirtual, Shenzhen
Period2021/07/182021/07/22

ASJC Scopus 主題領域

  • ソフトウェア
  • 人工知能

フィンガープリント

「DeepfakeUCL: Deepfake Detection via Unsupervised Contrastive Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル