TY - JOUR
T1 - Combination of a pressure source and block movement for ground deformation analysis at Merapi volcano prior to the eruptions in 2006 and 2010
AU - Aisyah, Nurnaning
AU - Iguchi, Masato
AU - Subandriyo,
AU - Budisantoso, Agus
AU - Hotta, Kohei
AU - Sumarti, Sri
N1 - Publisher Copyright:
© 2018
PY - 2018/5/15
Y1 - 2018/5/15
N2 - We analyzed ground deformation prior to the eruptions in 2006 and 2010 at Merapi volcano, Central Java, Indonesia. Ground deformation was monitored by electronic distance measurement (EDM) by measuring the slope distance toward 12 reflectors installed near the summit from five benchmarks on flanks every day. A large change of slope distance (CSD) was detected on the southeast and south baselines and a minor CSD was detected on the north and northwest baselines during the pre-eruptive stages of both the 2006 and 2010 eruptions. We applied a block movement model to the south and southeast baselines and a spherical pressure source model to the CSDs on the north and northwest baselines using the finite element method (FEM). The rates of block movement southward and the volume change of the pressure source increased on April 7, 2006 and continued at constant rates until the appearance of a new lava dome on April 26. Prior to the eruption in 2010, the block movement southeastward and the volume increase of the pressure source accelerated in the middle of October, and acceleration continued until the first outburst on October 26, 2010. Temporal patterns of the block movement and the increase in the volume of the pressure source correlate well with the increase in seismicity of VT and MP earthquakes. The pressure sources were obtained at a depth of 2 ± 0.5 km below the summit, and this position corresponds to the aseismic zone of VT earthquakes. Magma injection at the shallow part of this region causes an increase in the volume of the pressure source, and inflation of the ground of the summit triggered gravitational slip southeastward or southward of the ground surface. The volumes increases of the pressure sources were 9.7 ± 1 M m3 and 17.6 ± 0.8 M m3 in 2006 and 2010, respectively. The volume increase is related to the scale and type of the eruption. The effusive eruption in 2006 had a volcanic explosivity index (VEI) of 2 and the explosive eruption in 2010 had a VEI of 4. The directions and amounts of the block movement are strongly related to topography, hydrothermally weak zone and underground gap near the summit between West and East Domes.
AB - We analyzed ground deformation prior to the eruptions in 2006 and 2010 at Merapi volcano, Central Java, Indonesia. Ground deformation was monitored by electronic distance measurement (EDM) by measuring the slope distance toward 12 reflectors installed near the summit from five benchmarks on flanks every day. A large change of slope distance (CSD) was detected on the southeast and south baselines and a minor CSD was detected on the north and northwest baselines during the pre-eruptive stages of both the 2006 and 2010 eruptions. We applied a block movement model to the south and southeast baselines and a spherical pressure source model to the CSDs on the north and northwest baselines using the finite element method (FEM). The rates of block movement southward and the volume change of the pressure source increased on April 7, 2006 and continued at constant rates until the appearance of a new lava dome on April 26. Prior to the eruption in 2010, the block movement southeastward and the volume increase of the pressure source accelerated in the middle of October, and acceleration continued until the first outburst on October 26, 2010. Temporal patterns of the block movement and the increase in the volume of the pressure source correlate well with the increase in seismicity of VT and MP earthquakes. The pressure sources were obtained at a depth of 2 ± 0.5 km below the summit, and this position corresponds to the aseismic zone of VT earthquakes. Magma injection at the shallow part of this region causes an increase in the volume of the pressure source, and inflation of the ground of the summit triggered gravitational slip southeastward or southward of the ground surface. The volumes increases of the pressure sources were 9.7 ± 1 M m3 and 17.6 ± 0.8 M m3 in 2006 and 2010, respectively. The volume increase is related to the scale and type of the eruption. The effusive eruption in 2006 had a volcanic explosivity index (VEI) of 2 and the explosive eruption in 2010 had a VEI of 4. The directions and amounts of the block movement are strongly related to topography, hydrothermally weak zone and underground gap near the summit between West and East Domes.
KW - Block movement
KW - Change of slope distance
KW - Finite element method
KW - Merapi volcano
KW - Pressure source
UR - http://www.scopus.com/inward/record.url?scp=85047105931&partnerID=8YFLogxK
U2 - 10.1016/j.jvolgeores.2018.05.001
DO - 10.1016/j.jvolgeores.2018.05.001
M3 - 学術論文
AN - SCOPUS:85047105931
SN - 0377-0273
VL - 357
SP - 239
EP - 253
JO - Journal of Volcanology and Geothermal Research
JF - Journal of Volcanology and Geothermal Research
ER -