Collective behavior acquisition of real robotic swarms using deep reinforcement learning

Toshiyuki Yasuda, Kazuhiro Ohkura

研究成果: 書籍の章/レポート/会議録会議への寄与査読

12 被引用数 (Scopus)

抄録

Swarm robotic systems are a type of multi-robot systems, in which robots operate without any form of centralized control. The most popular approach for SRS is the so-called ad hoc or behavior-based approach; desired collective behavior is obtained by manually by designing the behavior of individual robot in advance. On the other hand, in the principled or automatic design approach, a certain general methodology for developing appropriate collective behavior is adopted. This paper investigates a deep reinforcement learning approach to collective behavior acquisition of swarm robotics systems. Robots are expected to collect information in parallel and share their experience for accelerating the learning. We conduct real swarm robot experiments and evaluate the learning performance in a scenario where robots consecutively travel between two landmarks.

本文言語英語
ホスト出版物のタイトルProceedings - 2nd IEEE International Conference on Robotic Computing, IRC 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ179-180
ページ数2
ISBN(電子版)9781538646519
DOI
出版ステータス出版済み - 2018/04/02
イベント2nd IEEE International Conference on Robotic Computing, IRC 2018 - Laguna Hills, 米国
継続期間: 2018/01/312018/02/02

出版物シリーズ

名前Proceedings - 2nd IEEE International Conference on Robotic Computing, IRC 2018
2018-January

学会

学会2nd IEEE International Conference on Robotic Computing, IRC 2018
国/地域米国
CityLaguna Hills
Period2018/01/312018/02/02

ASJC Scopus 主題領域

  • 制御と最適化
  • 人工知能
  • ソフトウェア

フィンガープリント

「Collective behavior acquisition of real robotic swarms using deep reinforcement learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル