Classification of grazing-incidence small-angle X-ray scattering patterns by convolutional neural network

Hiroyuki Ikemoto*, Kazushi Yamamoto, Hideaki Touyama, Daisuke Yamashita, Masataka Nakamura, Hiroshi Okuda

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

13 被引用数 (Scopus)

抄録

Grazing-incidence small-angle X-ray scattering (GISAXS) patterns have multiple superimposed contributions from the shape of the nanoscale structure, the coupling between the particles, the partial pair correlation, and the layer geometry. Therefore, it is not easy to identify the model manually from the huge amounts of combinations. The convolutional neural network (CNN), which is one of the artificial neural networks, can find regularities to classify patterns from large amounts of combinations. CNN was applied to classify GISAXS patterns, focusing on the shape of the nanoparticles. The network found regularities from the GISAXS patterns and showed a success rate of about 90% for the classification. This method can efficiently classify a large amount of experimental GISAXS patterns according to a set of model shapes and their combinations.

本文言語英語
ページ(範囲)1069-1073
ページ数5
ジャーナルJournal of Synchrotron Radiation
27
DOI
出版ステータス出版済み - 2020/07/01

ASJC Scopus 主題領域

  • 放射線
  • 核物理学および高エネルギー物理学
  • 器械工学

フィンガープリント

「Classification of grazing-incidence small-angle X-ray scattering patterns by convolutional neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル