Charge-transfer mechanism in Pt/KTa(Zr)O3 photocatalysts modified with porphyrinoids for water splitting

Hidehisa Hagiwara, Takanori Inoue, Kenji Kaneko, Tatsumi Ishihara*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

38 被引用数 (Scopus)

抄録

The mechanism of photocatalytic splitting of H2O into H 2 and O2 on Pt/KTa(Zr)O3 modified with various porphyrinoids was investigated. The photocatalytic activity of KTaO3 catalysts is improved by dye modification. Cyanocobalamin (vitamin B 12) is the most effective for improving watersplitting activity, and the formation rates of H2 and O2 achieved values of 575 and 280 μmolgcat -1h-1, respectively. X-ray photoelectron spectroscopy spectra of KTa(Zr)O3 photocatalysts showed that Pt loaded onto dye-modi-fied KTaO3 was slightly oxidized and had low catalytic activity for the H2 oxidation reaction. Photoluminescence (PL) spectra of KTaO3 catalysts suggested that excitation energy was transferred between KTaO3, tetraphenylporphyrinatochromium(III) (Cr-TPP), and the Pt cocatalyst. The wavelength dependence of the activity of dye-modified KTa(Zr)O3 photocatalysts indicated that excitation of both KTa(Zr)O3 and the dye was essential for achieving increased photocatalytic activity. This result suggests that twostep excitation occurred in the dyemodified KTa(Zr)O 3 photocatalysts. Because the lifetime of the charge-separated state increased, this study reveals that modification with porphyrinoids is effective for increasing watersplitting activity.

本文言語英語
ページ(範囲)12862-12870
ページ数9
ジャーナルChemistry - A European Journal
15
46
DOI
出版ステータス出版済み - 2009/11/23

ASJC Scopus 主題領域

  • 触媒
  • 有機化学

フィンガープリント

「Charge-transfer mechanism in Pt/KTa(Zr)O3 photocatalysts modified with porphyrinoids for water splitting」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル