Chaotic vegetation evolution: leveraging multiple seeding strategies and a mutation module for global optimization problems

Rui Zhong, Chao Zhang, Jun Yu*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

5 被引用数 (Scopus)

抄録

This paper focuses on improving the overall performance of the vegetation evolution (VEGE) algorithm and proposes a chaotic VEGE with multiple seeding strategies and a mutation module (CVEGE). While the original VEGE exhibits robust exploitation capabilities, it falls short in terms of exploration and overcoming local optima. Thus, we introduce the chaotic local search operators, multiple seed dispersion strategies, and a unique mutation module to address these mentioned limitations. Furthermore, we incorporate a simplified sigmoid transfer function into CVEGE and propose a binary variant known as binary chaotic vegetation evolution (BCVEGE). In numerical experiments, we evaluate CVEGE on 10-D, 30-D, 50-D, and 100-D CEC2020 benchmark functions, as well as four engineering optimization problems. Additionally, BCVEGE is subjected to testing on two combinatorial optimization problems: wrapper-based feature selection tasks and classic 0/1 knapsack problems. Here, we employ two classic algorithms (i.e. differential evolution and particle swarm optimization) and seven state-of-the-art competitor algorithms including the original VEGE as the competitor algorithms. The sufficient numerical experiments and statistical analysis practically show that our proposal: CVEGE and BCVEGE, are competitive with compared algorithms. Furthermore, the demonstrated performance and scalability of CVEGE and BCVEGE suggest their potential utility across a wide range of optimization tasks.

本文言語英語
ページ(範囲)2387-2411
ページ数25
ジャーナルEvolutionary Intelligence
17
4
DOI
出版ステータス出版済み - 2024/08

ASJC Scopus 主題領域

  • 数学(その他)
  • コンピュータ ビジョンおよびパターン認識
  • 認知神経科学
  • 人工知能

フィンガープリント

「Chaotic vegetation evolution: leveraging multiple seeding strategies and a mutation module for global optimization problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル