Chaotic motion of propagating pulses in the Gray-Scott model

Masaaki Yadome*, Kei Ichi Ueda, Masaharu Nagayama

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

5 被引用数 (Scopus)

抄録

Transition routes of propagating pulses in the Gray-Scott model from oscillatory to chaotic motion are investigated by numerical studies. Global bifurcation of the Gray-Scott model gives us information about the onset mechanism of transient dynamics, such as the splitting and extinction of pulses. However, the instability mechanism of oscillatory pulses has not been clarified, even numerically. Global bifurcation analysis of time periodic oscillatory traveling pulses, called traveling breathers, enables us to find chaotic motions of oscillatory pulse solutions. Two types of transitions to chaos, namely, period-doubling sequences and breakdown of quasiperiodic solutions, are found near the bifurcation points of traveling breathers.

本文言語英語
論文番号056207
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
83
5
DOI
出版ステータス出版済み - 2011/05/09

ASJC Scopus 主題領域

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Chaotic motion of propagating pulses in the Gray-Scott model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル