Chaotic grey Wolf optimization

Hang Yu, Yang Yu, Yanting Liu, Yirui Wang, Shangce Gao

研究成果: 書籍の章/レポート/会議録会議への寄与査読

28 被引用数 (Scopus)

抄録

Grey Wolf optimization algorithm (GWO) is a recently proposed meta-heuristics and has shown promising performance in solving complex function optimization and engineering problems. To further enrich the search dynamics of GWO, the chaotic local search (CLS) mechanism is incorporated into GWO to enhance the search by taking the properties of ergodicity and randomness of chaotic maps. Twelve different kinds of chaotic maps are investigated to give some insights into the influence of CLS on GWO. Experimental results based on 29 widely used benchmark functions suggest that CLS indeed enables GWO to possess better performance in terms of solution accuracy, solution distribution, and convergence property. Summarized results also reveal that the performance of the resultant chaotic grey Wolf optimization (CGWO) algorithm is effected not only by the characteristics of the embedded chaotic map, but also by the landscape of the solved problems.

本文言語英語
ホスト出版物のタイトルPIC 2016 - Proceedings of the 2016 IEEE International Conference on Progress in Informatics and Computing
編集者Yinglin Wang, Yaoru Sun
出版社Institute of Electrical and Electronics Engineers Inc.
ページ103-113
ページ数11
ISBN(電子版)9781509034833
DOI
出版ステータス出版済み - 2017/06/15
イベント4th IEEE International Conference on Progress in Informatics and Computing, PIC 2016 - Shanghai, 中国
継続期間: 2016/12/232016/12/25

出版物シリーズ

名前PIC 2016 - Proceedings of the 2016 IEEE International Conference on Progress in Informatics and Computing

学会

学会4th IEEE International Conference on Progress in Informatics and Computing, PIC 2016
国/地域中国
CityShanghai
Period2016/12/232016/12/25

ASJC Scopus 主題領域

  • コンピュータ ビジョンおよびパターン認識
  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • 情報システム
  • 健康情報学

フィンガープリント

「Chaotic grey Wolf optimization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル