Challenge of Roof Damage Housings Detection from Satellite Images by Applying Deep Learning Methodology: -A Case Study of Ibaraki City at 2018 Osaka Earthquake-

Munenari Inoguchi, Seiichi Kara, Kazuya Shirai, Atsushi Imai

研究成果: 書籍の章/レポート/会議録会議への寄与査読

1 被引用数 (Scopus)

抄録

In Japan, we were suffered by many kinds of disasters. Once disaster occurs, we have to develop the common operational picture including damage situation in order to realize effective disaster response. However, it should take much time-cost to gather the damage situation. Against this issue, we decided to detect blue sheets object put on the damaged roof in recovery phase of disaster response. In this research, we tried to detect damage situation from satellite images by utilizing deep learning methodology. Especially, we adopt VGG-16 model developed by Oxford university, which gained fourth prize of ILSVRC in 2014. We prepared training data and applied it to actual affected area by 2018 Osaka earthquake as a case study. Finally, we confirmed that our trained AI detected blue sheet object with about 95% accuracy ratio.

本文言語英語
ホスト出版物のタイトルITC-CSCC 2020 - 35th International Technical Conference on Circuits/Systems, Computers and Communications
出版社Institute of Electrical and Electronics Engineers Inc.
ページ172-176
ページ数5
ISBN(電子版)9784885523281
出版ステータス出版済み - 2020/07
イベント35th International Technical Conference on Circuits/Systems, Computers and Communications, ITC-CSCC 2020 - Nagoya, 日本
継続期間: 2020/07/032020/07/06

出版物シリーズ

名前ITC-CSCC 2020 - 35th International Technical Conference on Circuits/Systems, Computers and Communications

学会

学会35th International Technical Conference on Circuits/Systems, Computers and Communications, ITC-CSCC 2020
国/地域日本
CityNagoya
Period2020/07/032020/07/06

ASJC Scopus 主題領域

  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 情報システムおよび情報管理
  • 電子工学および電気工学

フィンガープリント

「Challenge of Roof Damage Housings Detection from Satellite Images by Applying Deep Learning Methodology: -A Case Study of Ibaraki City at 2018 Osaka Earthquake-」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル