TY - JOUR
T1 - Ceramide in lipid particles enhances heparan sulfate proteoglycan and low density lipoprotein receptor-related protein-mediated uptake by macrophages
AU - Morita, Shin Ya
AU - Kawabe, Misa
AU - Sakurai, Atsushi
AU - Okuhira, Keiichirou
AU - Vertut-Doï, Aline
AU - Nakano, Minoru
AU - Handa, Tetsurou
PY - 2004/6/4
Y1 - 2004/6/4
N2 - Arterial wall sphingomyelinase (SMase) has been proposed to be involved in atherogenesis. SMase modification of lipoproteins has been shown to occur in atherosclerotic lesions and to facilitate their uptake by macrophages and foam cell formation. To investigate the mechanism of macrophage uptake enhanced by SMase, we prepared lipid emulsions containing sphingomyelin (SM) or ceramide (CER) as model particles of lipoproteins. SMase remarkably increased the uptake of SM-containing emulsions by J774 macrophages without apolipoproteins. The emulsion uptake was negatively correlated with the degree of particle aggregation by pretreatment with SMase, whereas the uptake of CER-containing emulsions was significantly larger than SM-containing emulsions, indicating that enhancement of uptake is due to the generation of CER molecules in particles but not to the aggregation by SMase. Heparan sulfate proteoglycans (HSPGs) and low density lipoprotein receptor-related protein (LRP) were crucial for CER-enhanced emulsion uptake, because heparin or lactoferrin inhibited the emulsion uptake. Confocal microscopy also showed that SMase promoted both binding and internalization of emulsions by J774 macrophages, which were almost abolished by lactoferrin. Apolipoprotein E further increased the uptake of CER-containing emulsions compared with SM-containing emulsions. These findings suggest the generation of CER in lipoproteins by SMase facilitates the macrophage uptake via HSPG and LRP pathways and plays a crucial role in foam cell formation. Thus, CER may act as an important atherogenic molecule.
AB - Arterial wall sphingomyelinase (SMase) has been proposed to be involved in atherogenesis. SMase modification of lipoproteins has been shown to occur in atherosclerotic lesions and to facilitate their uptake by macrophages and foam cell formation. To investigate the mechanism of macrophage uptake enhanced by SMase, we prepared lipid emulsions containing sphingomyelin (SM) or ceramide (CER) as model particles of lipoproteins. SMase remarkably increased the uptake of SM-containing emulsions by J774 macrophages without apolipoproteins. The emulsion uptake was negatively correlated with the degree of particle aggregation by pretreatment with SMase, whereas the uptake of CER-containing emulsions was significantly larger than SM-containing emulsions, indicating that enhancement of uptake is due to the generation of CER molecules in particles but not to the aggregation by SMase. Heparan sulfate proteoglycans (HSPGs) and low density lipoprotein receptor-related protein (LRP) were crucial for CER-enhanced emulsion uptake, because heparin or lactoferrin inhibited the emulsion uptake. Confocal microscopy also showed that SMase promoted both binding and internalization of emulsions by J774 macrophages, which were almost abolished by lactoferrin. Apolipoprotein E further increased the uptake of CER-containing emulsions compared with SM-containing emulsions. These findings suggest the generation of CER in lipoproteins by SMase facilitates the macrophage uptake via HSPG and LRP pathways and plays a crucial role in foam cell formation. Thus, CER may act as an important atherogenic molecule.
UR - http://www.scopus.com/inward/record.url?scp=2642513160&partnerID=8YFLogxK
U2 - 10.1074/jbc.M402035200
DO - 10.1074/jbc.M402035200
M3 - 学術論文
C2 - 15044445
AN - SCOPUS:2642513160
SN - 0021-9258
VL - 279
SP - 24355
EP - 24361
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 23
ER -