Broad Learning Can Tolerate Noise in Image Recognition

Rong Long Wang, Yang Yu*, Yusuke Terada, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿Letter査読

1 被引用数 (Scopus)

抄録

In recent years, deep learning has achieved very good results because large amounts of learning data have become easily available due to improvements in computer capabilities and big data. However, it has a problem that the accuracy becomes very bad for strong noise. Therefore, in this study, we compare the classification accuracy of existing mainstream neural networks, including broad learning, convolutional neural network and multilayer perceptron. Then, their performance is verified according to the experimental results by using noise-added MNIST and Fashion MNIST database.

本文言語英語
ページ(範囲)167-169
ページ数3
ジャーナルIEEJ Transactions on Electrical and Electronic Engineering
16
1
DOI
出版ステータス出版済み - 2021/01

ASJC Scopus 主題領域

  • 電子工学および電気工学

フィンガープリント

「Broad Learning Can Tolerate Noise in Image Recognition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル