Brain Beta-Catenin Signalling during Stress and Depression

Chuin Hau Teo, Tomoko Soga, Ishwar S. Parhar

研究成果: ジャーナルへの寄稿総説査読

43 被引用数 (Scopus)

抄録

Beta-catenin is a protein with dual functions in the cell, playing a role in both adhesion between cells as well as gene transcription via the canonical Wnt signalling pathway. In the canonical Wnt signalling pathway, beta-catenin again plays multiple roles. In the embryonic stage, the regulation of beta-catenin levels activates genes that govern cell proliferation and differentiation. In an adult organism, beta-catenin continues to regulate the cell cycle - as a result over-expression of beta-catenin may lead to cancer. In the brain, dysfunctions in Wnt signalling related to beta-catenin levels may also cause various pathological conditions like Alzheimer's disease, Parkinson's disease, and depression. Beta-catenin can be influenced by stressful conditions and increases in glucocorticoid levels. In addition, beta-catenin can be regulated by neurotransmitters such as serotonin and dopamine. Fluctuations in beta-catenin in brain regions under duress have been associated with depressive-like behaviours. It is theorized that the change in behaviour can be attributed to the regulation of Dicer by beta-catenin. Dicer, a protein that produces micro-RNAs in the cell, is a target gene for beta-catenin. Amongst the micro-RNA that it produces are those involved in stress resilience. In this way, beta-catenin has taken its place in the well-studied biochemistry of stress and depression, and future research into this interesting protein may yet yield fruitful results in that field.

本文言語英語
ページ(範囲)31-42
ページ数12
ジャーナルNeuroSignals
26
1
DOI
出版ステータス出版済み - 2019/04/01

ASJC Scopus 主題領域

  • 神経学
  • 発達神経科学
  • 細胞および分子神経科学

フィンガープリント

「Brain Beta-Catenin Signalling during Stress and Depression」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル