Blur Removal Via Blurred-Noisy Image Pair

Chunzhi Gu, Xuequan Lu, Ying He, Chao Zhang*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

28 被引用数 (Scopus)

抄録

Complex blur such as the mixup of space-variant and space-invariant blur, which is hard to model mathematically, widely exists in real images. In this article, we propose a novel image deblurring method that does not need to estimate blur kernels. We utilize a pair of images that can be easily acquired in low-light situations: (1) a blurred image taken with low shutter speed and low ISO noise; and (2) a noisy image captured with high shutter speed and high ISO noise. Slicing the blurred image into patches, we extend the Gaussian mixture model (GMM) to model the underlying intensity distribution of each patch using the corresponding patches in the noisy image. We compute patch correspondences by analyzing the optical flow between the two images. The Expectation Maximization (EM) algorithm is utilized to estimate the parameters of GMM. To preserve sharp features, we add an additional bilateral term to the objective function in the M-step. We eventually add a detail layer to the deblurred image for refinement. Extensive experiments on both synthetic and real-world data demonstrate that our method outperforms state-of-the-art techniques, in terms of robustness, visual quality, and quantitative metrics.

本文言語英語
論文番号9259252
ページ(範囲)345-359
ページ数15
ジャーナルIEEE Transactions on Image Processing
30
DOI
出版ステータス出版済み - 2021

ASJC Scopus 主題領域

  • ソフトウェア
  • コンピュータ グラフィックスおよびコンピュータ支援設計

フィンガープリント

「Blur Removal Via Blurred-Noisy Image Pair」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル