TY - JOUR
T1 - Beta-2 Adrenergic Agonists Are Substrates and Inhibitors of Human Organic Cation Transporter 1
AU - Salomon, Johanna J.
AU - Hagos, Yohannes
AU - Petzke, Sören
AU - Kühne, Annett
AU - Gausterer, Julia C.
AU - Hosoya, Ken Ichi
AU - Ehrhardt, Carsten
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/8/3
Y1 - 2015/8/3
N2 - Beta-2-adrenergic agonists are first line therapeutics in the treatment of asthma and chronic obstructive pulmonary disease (COPD). Upon inhalation, bronchodilation is achieved after binding to β2-receptors, which are primarily localized on airway smooth muscle cells. Given that β2-adrenergic agonists chemically are bases, they carry net positive charge at physiologic pH value in the lungs (i.e., pH 7.4). Here, we studied whether β2-agonists interact with organic cation transporters (OCT) and whether this interaction exerted an influence on their passage across the respiratory epithelium to their target receptors. [14C]-TEA uptake into proximal (i.e., Calu-3) and distal (i.e., A549 and NCI-H441) lung epithelial cells was significantly reduced in the presence of salbutamol sulfate, formoterol fumarate, and salmeterol xinafoate in vitro. Expression of all five members of the OCT/N family has been confirmed in human pulmonary epithelial cells in situ and in vitro, which makes the identification of the transporter(s) responsible for the β2-agonist interaction challenging. Thus, additional experiments were carried out in HEK-293 cells transfected with hOCT1-3. The most pronounced inhibition of organic cation uptake by β2-agonists was observed in hOCT1 overexpressing HEK-293 cells. hOCT3 transfected HEK-293 cells were affected to a lesser extent, and in hOCT2 transfectants only marginal inhibition of organic cation uptake by β2-agonists was observed. Bidirectional transport studies across confluent NCI-H441 cell monolayers revealed a net absorptive transport of [3H]-salbutamol, which was sensitive to inhibition by the OCT1 modulator, verapamil. Accordingly, salbutamol uptake into hOCT1 overexpressing HEK-293 cells was time- and concentration-dependent and could be completely blocked by decynium-22. Taken together, our data suggest that β2-agonists are specific substrates and inhibitors of OCT1 in human respiratory epithelial cells and that this transporter might play a role in the pulmonary disposition of drugs of this class.
AB - Beta-2-adrenergic agonists are first line therapeutics in the treatment of asthma and chronic obstructive pulmonary disease (COPD). Upon inhalation, bronchodilation is achieved after binding to β2-receptors, which are primarily localized on airway smooth muscle cells. Given that β2-adrenergic agonists chemically are bases, they carry net positive charge at physiologic pH value in the lungs (i.e., pH 7.4). Here, we studied whether β2-agonists interact with organic cation transporters (OCT) and whether this interaction exerted an influence on their passage across the respiratory epithelium to their target receptors. [14C]-TEA uptake into proximal (i.e., Calu-3) and distal (i.e., A549 and NCI-H441) lung epithelial cells was significantly reduced in the presence of salbutamol sulfate, formoterol fumarate, and salmeterol xinafoate in vitro. Expression of all five members of the OCT/N family has been confirmed in human pulmonary epithelial cells in situ and in vitro, which makes the identification of the transporter(s) responsible for the β2-agonist interaction challenging. Thus, additional experiments were carried out in HEK-293 cells transfected with hOCT1-3. The most pronounced inhibition of organic cation uptake by β2-agonists was observed in hOCT1 overexpressing HEK-293 cells. hOCT3 transfected HEK-293 cells were affected to a lesser extent, and in hOCT2 transfectants only marginal inhibition of organic cation uptake by β2-agonists was observed. Bidirectional transport studies across confluent NCI-H441 cell monolayers revealed a net absorptive transport of [3H]-salbutamol, which was sensitive to inhibition by the OCT1 modulator, verapamil. Accordingly, salbutamol uptake into hOCT1 overexpressing HEK-293 cells was time- and concentration-dependent and could be completely blocked by decynium-22. Taken together, our data suggest that β2-agonists are specific substrates and inhibitors of OCT1 in human respiratory epithelial cells and that this transporter might play a role in the pulmonary disposition of drugs of this class.
KW - bronchodilators
KW - competitive inhibition
KW - inhalation biopharmaceutics
KW - pulmonary drug disposition
KW - respiratory epithelium
UR - http://www.scopus.com/inward/record.url?scp=84938335051&partnerID=8YFLogxK
U2 - 10.1021/mp500854e
DO - 10.1021/mp500854e
M3 - 学術論文
C2 - 25751092
AN - SCOPUS:84938335051
SN - 1543-8384
VL - 12
SP - 2633
EP - 2641
JO - Molecular Pharmaceutics
JF - Molecular Pharmaceutics
IS - 8
ER -