Beamspace-domain learning of minimum variance beamformer with fully convolutional network

Ryuichi Hiki*, Michiya Mozumi, Masaaki Omura, Ryo Nagaoka, Hideyuki Hasegawa*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

1 被引用数 (Scopus)

抄録

In medical ultrasound systems, receiving beamforming is necessary to produce an ultrasonic image. Although minimum variance (MV) beamforming was developed to achieve higher image quality than commonly used delay-and-sum (DAS) beamforming, it is computationally expensive. Therefore, in this study, we investigated how to convert the beamforming profile of DAS to that of MV using deep learning. The results showed that a fully convolutional network could produce an image with comparable quality to that in MV beamforming in a shorter time than the conventional MV beamformer.

本文言語英語
論文番号SJ1050
ジャーナルJapanese Journal of Applied Physics
62
SJ
DOI
出版ステータス出版済み - 2023/07/01

ASJC Scopus 主題領域

  • 工学一般
  • 物理学および天文学一般

フィンガープリント

「Beamspace-domain learning of minimum variance beamformer with fully convolutional network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル