Battery energy management of autonomous electric vehicles using computationally inexpensive model predictive control

Kyoungseok Han, Tam W. Nguyen, Kanghyun Nam*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

11 被引用数 (Scopus)

抄録

With the emergence of vehicle-communication technologies, many researchers have strongly focused their interest in vehicle energy-efficiency control using this connectivity. For instance, the exploitation of preview traffic enables the vehicle to plan its speed and position trajectories given a prediction horizon so that energy consumption is minimized. To handle the strong uncertainties in the traffic model in the future, a constrained controller is generally employed in the existing researches. However, its expensive computational feature largely prevents its commercialization. This paper addresses computational burden of the constrained controller by proposing a computationally tractable model prediction control (MPC) for real-time implementation in autonomous electric vehicles. We present several remedies to achieve a computationally manageable constrained control, and analyze its real-time computation feasibility and effectiveness in various driving conditions. In particular, both warmstarting and move-blocking methods could relax the computations significantly. Through the validations, we confirm the effectiveness of the proposed approach while maintaining good performance compared to other alternative schemes.

本文言語英語
論文番号1277
ページ(範囲)1-19
ページ数19
ジャーナルElectronics (Switzerland)
9
8
DOI
出版ステータス出版済み - 2020/08

ASJC Scopus 主題領域

  • 制御およびシステム工学
  • 信号処理
  • ハードウェアとアーキテクチャ
  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学

フィンガープリント

「Battery energy management of autonomous electric vehicles using computationally inexpensive model predictive control」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル