TY - JOUR
T1 - Astrocytic γ-aminobutyric acid (GABA) transporters mediate guanidinoacetate transport in rat brain
AU - Tachikawa, Masanori
AU - Yashiki, Ayane
AU - Akanuma, Shin ichi
AU - Matsukawa, Haruka
AU - Ide, Soichiro
AU - Minami, Masabumi
AU - Hosoya, Ken ichi
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2018/2
Y1 - 2018/2
N2 - Guanidinoacetate (GAA) is a biosynthetic precursor of creatine, which plays a critical role in homeostasis of high-energy phosphates in the brain, but cerebral accumulation of GAA leads to neurological complications, such as epilepsy and seizures. The purpose of the present study was to clarify the contribution of the γ-aminobutyric acid (GABA) transport systems to GAA transport in astrocytes by means of uptake studies in rat brain slices, primary astrocyte cultures and Chinese hamster ovary (CHO) cells expressing human GABA transporters (GATs). GAA uptake by rat brain slices was Na+- and Cl−-dependent, and GABA-sensitive. The inhibitory effect of GABA, a common substrate of GATs, on GAA uptake by the brain slices was similar to that of β-alanine, a selective substrate of GAT2/Slc6a13, GAT3/Slc6a11, and taurine transporter (TauT)/Slc6a6. Taurine, a high-affinity substrate of TauT/Slc6a6, exhibited a lesser inhibitory effect. In contrast, betaine, a substrate of betaine-GABA transporter 1 (BGT1)/Slc6a12, and creatine, a substrate of creatine transporter (CRT)/Slc6a8, had little inhibitory effect. A similar inhibition profile was observed in primary-cultured astrocytes. CHO cells expressing human GAT2/SLC6A13, GAT3/SLC6A11 and BGT1/SLC6A12 exhibited GAA transport, whereas CHO cells expressing GAT1/SLC6A1 did not. The Michaelis-Menten values in CHO cells expressing GAT2/SLC6A13 and GAT3/SLC6A11 were similar to those in primary-cultured astrocytes. Overall, our results suggest that astrocytic GAT2/Slc6a13 and GAT3/Slc6a11 play major roles in GAA uptake as regulatory mechanisms of GAA in rat brain, while TauT/Slc6a6, BGT1/Slc6a12, and CRT/Slc6a8 make relatively small contributions.
AB - Guanidinoacetate (GAA) is a biosynthetic precursor of creatine, which plays a critical role in homeostasis of high-energy phosphates in the brain, but cerebral accumulation of GAA leads to neurological complications, such as epilepsy and seizures. The purpose of the present study was to clarify the contribution of the γ-aminobutyric acid (GABA) transport systems to GAA transport in astrocytes by means of uptake studies in rat brain slices, primary astrocyte cultures and Chinese hamster ovary (CHO) cells expressing human GABA transporters (GATs). GAA uptake by rat brain slices was Na+- and Cl−-dependent, and GABA-sensitive. The inhibitory effect of GABA, a common substrate of GATs, on GAA uptake by the brain slices was similar to that of β-alanine, a selective substrate of GAT2/Slc6a13, GAT3/Slc6a11, and taurine transporter (TauT)/Slc6a6. Taurine, a high-affinity substrate of TauT/Slc6a6, exhibited a lesser inhibitory effect. In contrast, betaine, a substrate of betaine-GABA transporter 1 (BGT1)/Slc6a12, and creatine, a substrate of creatine transporter (CRT)/Slc6a8, had little inhibitory effect. A similar inhibition profile was observed in primary-cultured astrocytes. CHO cells expressing human GAT2/SLC6A13, GAT3/SLC6A11 and BGT1/SLC6A12 exhibited GAA transport, whereas CHO cells expressing GAT1/SLC6A1 did not. The Michaelis-Menten values in CHO cells expressing GAT2/SLC6A13 and GAT3/SLC6A11 were similar to those in primary-cultured astrocytes. Overall, our results suggest that astrocytic GAT2/Slc6a13 and GAT3/Slc6a11 play major roles in GAA uptake as regulatory mechanisms of GAA in rat brain, while TauT/Slc6a6, BGT1/Slc6a12, and CRT/Slc6a8 make relatively small contributions.
KW - Astrocyte
KW - Creatine
KW - GABA
KW - GABA transporter
KW - Guanidinoacetate
KW - Neuron-glial relationship
UR - http://www.scopus.com/inward/record.url?scp=85035802542&partnerID=8YFLogxK
U2 - 10.1016/j.neuint.2017.11.013
DO - 10.1016/j.neuint.2017.11.013
M3 - 学術論文
C2 - 29175673
AN - SCOPUS:85035802542
SN - 0197-0186
VL - 113
SP - 1
EP - 7
JO - Neurochemistry International
JF - Neurochemistry International
ER -