Ant colony systems for optimization problems in dynamic environments

Yirui Wang, Shangce Gao, Yuki Todo

研究成果: 書籍の章/レポート/会議録査読

6 被引用数 (Scopus)

抄録

Ant colony optimization (ACO) is an intelligent bionic algorithm which simulates the foraging behavior of ant colony. The conventional ACOs mainly deal with the static optimization problems. In other words, the environment of problem maintains invariant. Actually, the most problems in reality are dynamic, namely, the changing environments. The ACO can use its robustness and self-adaptability to resolve dynamic problems properly. In this chapter, the ACO with neighborhood search is introduced to address dynamic traveling salesman problem and the ACO with improved K-means clustering algorithm, which uses three immigrants schemes including random immigrants, elitism-based immigrants and memory-based immigrants, is used for dynamic location routing problem. Several conventional ACOs and other heuristic algorithms are utilized to compare with new ACOs in the corresponding dynamic problems. The comparative experiments demonstrate two novel ACOs are effective and efficient for respective dynamic optimization problems.

本文言語英語
ホスト出版物のタイトルSwarm Intelligence - Volume 1
ホスト出版物のサブタイトルPrinciples, current algorithms and methods
出版社Institution of Engineering and Technology
ページ85-120
ページ数36
ISBN(電子版)9781785616273
DOI
出版ステータス出版済み - 2018/01/01

ASJC Scopus 主題領域

  • コンピュータサイエンス一般
  • 物理学および天文学一般

フィンガープリント

「Ant colony systems for optimization problems in dynamic environments」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル