Analytical and numerical studies of the boundary slip in the immersed boundary-thermal lattice Boltzmann method

Takashi Seta*, Kosuke Hayashi, Akio Tomiyama

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

16 被引用数 (Scopus)

抄録

We analytically and numerically investigate the boundary slip, including the velocity slip and the temperature jump, in immersed boundary-thermal lattice Boltzmann methods (IB-TLBMs) with the two-relaxation-time collision operator. We derive the theoretical equation for the relaxation parameters considering the effect of the advection velocity on the temperature jump of the IB-TLBMs. The analytical and numerical solutions demonstrate that the proposed iterative correction methods without the computational cost of the sparse matrix solver reduce the boundary slip and boundary-value deviation as effectively as the implicit correction method for any relaxation time. Because the commonly used multi-direct forcing method does not consider the contributions of the body force to the momentum flux, it cannot completely eliminate the boundary slip because of the numerical instability for a long relaxation time. Both types of proposed iterative correction methods are more numerically stable than the implicit correction method. In simulations of flow past a circular cylinder and of natural convection, the present iterative correction methods yield adequate results without the errors of the velocity slip, the temperature jump, and the boundary-value deviation for any relaxation time parameters and for any number of Lagrangian points per length. The combination of the present methods and the two-relaxation-time collision operator is suitable for simulating fluid flow with thermal convection in the multiblock method in which the relaxation time increases in inverse proportion to the grid size.

本文言語英語
ページ(範囲)454-490
ページ数37
ジャーナルInternational Journal for Numerical Methods in Fluids
86
7
DOI
出版ステータス出版済み - 2018/03/10

ASJC Scopus 主題領域

  • 計算力学
  • 材料力学
  • 機械工学
  • コンピュータ サイエンスの応用
  • 応用数学

フィンガープリント

「Analytical and numerical studies of the boundary slip in the immersed boundary-thermal lattice Boltzmann method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル