An improved transiently chaotic neural network for the maximum independent set problem.

Xinshun Xu*, Zheng Tang, Jiahai Wang

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

3 被引用数 (Scopus)

抄録

By analyzing the dynamic behaviors of the transiently chaotic neural network and greedy heuristic for the maximum independent set (MIS) problem, we present an improved transiently chaotic neural network for the MIS problem in this paper. Extensive simulations are performed and the results show that this proposed transiently chaotic neural network can yield better solutions to p-random graphs than other existing algorithms. The efficiency of the new model is also confirmed by the results on the complement graphs of some DIMACS clique instances in the second DIMACS challenge. Moreover, the improved model uses fewer steps to converge to stable state in comparison with the original transiently chaotic neural network.

本文言語英語
ページ(範囲)381-392
ページ数12
ジャーナルInternational Journal of Neural Systems
14
6
DOI
出版ステータス出版済み - 2004/12

ASJC Scopus 主題領域

  • コンピュータ ネットワークおよび通信

フィンガープリント

「An improved transiently chaotic neural network for the maximum independent set problem.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル