An enhanced LSHADE with generalized Pareto distribution selection for escaping local optima

Zhe Xu, Jiatianyi Yu, Baohang Zhang, Lin Yang, Yanting Liu, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

抄録

Local search hybridized with adaptive differential evolution (LSHADE), as one of the effective variants of differential evolution, has successfully spawned numerous variations that achieved victory in numerous IEEE congress on evolutionary computation (CEC) competitions. The successful strategies have yielded outstanding performance, with these LSHADE variants consistently showcasing rapid convergence. However, they have grappled with the challenge of escaping the dilemma of converging into local optima. To address this issue, this paper proposes an enhanced version of LSHADE, incorporating a generalized Pareto distribution selection mechanism (LSHADE-GPS). The objective is to leverage the power-law long tail characteristics of the Pareto distribution to generate emerging individuals capable of breaking free from the current impasse, thereby significantly enhancing the algorithm’s exploratory performance. Paired with a novel adaptive selection mechanism, effective control is applied at opportune moments, substantially elevating the likelihood of the algorithm escaping local optima. Extensive experimentation and data analysis on CEC2017 benchmark functions demonstrate that LSHADE-GPS exhibits superior performance compared to other state-of-the-art competitors.

本文言語英語
論文番号551
ジャーナルJournal of Supercomputing
81
4
DOI
出版ステータス出版済み - 2025/03

ASJC Scopus 主題領域

  • 理論的コンピュータサイエンス
  • ソフトウェア
  • 情報システム
  • ハードウェアとアーキテクチャ

フィンガープリント

「An enhanced LSHADE with generalized Pareto distribution selection for escaping local optima」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル