An adaptive position-guided gravitational search algorithm for function optimization and image threshold segmentation

Anjing Guo, Yirui Wang*, Lijun Guo, Rong Zhang, Yang Yu, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

33 被引用数 (Scopus)

抄録

Gravitational search algorithm is a population-based optimization method. To address its low search performance and premature convergence, a novel variant called adaptive position-guided gravitational search algorithm is proposed. It utilizes the best, worst and other particles’ position information to adaptively determine the Kbest particles which provide a good movement direction. The gravitational force is reinforced by Kbest particles and new constructed Dbest particles to improve the exploration and exploitation abilities. Various particles’ position information jointly provide the effective search guideline and accelerate the convergence rate. Validations are conducted to firstly discuss the parameters and strategies of the proposed algorithm. Then, compared with several state-of-the-art gravitational search algorithm variants on CEC2017 benchmark functions, the proposed algorithm proves its superiority. Finally, the proposed algorithm exhibits the good segmentation effect on image threshold segmentation problems.

本文言語英語
論文番号106040
ジャーナルEngineering Applications of Artificial Intelligence
121
DOI
出版ステータス出版済み - 2023/05

ASJC Scopus 主題領域

  • 制御およびシステム工学
  • 人工知能
  • 電子工学および電気工学

フィンガープリント

「An adaptive position-guided gravitational search algorithm for function optimization and image threshold segmentation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル