AIMOES: Archive information assisted multi-objective evolutionary strategy for ab initio protein structure prediction

Shuangbao Song, Shangce Gao*, Xingqian Chen, Dongbao Jia, Xiaoxiao Qian, Yuki Todo

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

49 被引用数 (Scopus)

抄録

Despite half-century's unremitting efforts, the prediction of protein structure from its amino acid sequence remains a grand challenge in computational biology and bioinformatics. Two key factors are crucial to solving the protein structure prediction (PSP) problem: an effective energy function and an efficient conformation search strategy. In this study, we model the PSP as a multi-objective optimization problem. A three-objective evolution algorithm called AIMOES is proposed. AIMOES adopts three physical energy terms: bond energy, non-bond energy, and solvent accessible surface area. In AIMOES, an evolution scheme which flexibly reuse past search experiences is incorporated to enhance the efficiency of conformation search. A decision maker based on the hierarchical clustering is carried out to select representative solutions. A set of benchmark proteins with 30–91 residues is tested to verify the performance of the proposed method. Experimental results show the effectiveness of AIMOES in terms of the root mean square deviation (RMSD) metric, the distribution diversity of the obtained Pareto front and the success rate of mutation operators. The superiority of AIMOES is demonstrated by the performance comparison with other five state-of-the-art PSP methods.

本文言語英語
ページ(範囲)58-72
ページ数15
ジャーナルKnowledge-Based Systems
146
DOI
出版ステータス出版済み - 2018/04/15

ASJC Scopus 主題領域

  • 管理情報システム
  • ソフトウェア
  • 情報システムおよび情報管理
  • 人工知能

フィンガープリント

「AIMOES: Archive information assisted multi-objective evolutionary strategy for ab initio protein structure prediction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル