TY - JOUR
T1 - Aged vervet monkeys developing transthyretin amyloidosis with the human disease-causing Ile122 allele
T2 - A valid pathological model of the human disease
AU - Ueda, Mitsuharu
AU - Ageyama, Naohide
AU - Nakamura, Shinichiro
AU - Nakamura, Minami
AU - Chambers, James Kenn
AU - Misumi, Yohei
AU - Mizuguchi, Mineyuki
AU - Shinriki, Satoru
AU - Kawahara, Satomi
AU - Tasaki, Masayoshi
AU - Jono, Hirofumi
AU - Obayashi, Konen
AU - Sasaki, Erika
AU - Une, Yumi
AU - Ando, Yukio
N1 - Funding Information:
We thank Hiroko Katsura for her technical support during histopathological investigations. The authors’ work was partially supported by a Grant-in-Aid for Scientific Research (B) 21253742 (Y Ando) and by Grants-in-Aid for Young Scientists (B) 21790541 (M Ueda) from the Ministry of Education, Culture, Sports, Science and Technology.
PY - 2012/3
Y1 - 2012/3
N2 - Mutant forms of transthyretin (TTR) cause the most common type of autosomal-dominant hereditary systemic amyloidosis. In addition, wild-type TTR causes senile systemic amyloidosis, a sporadic disease seen in the elderly. Although spontaneous development of TTR amyloidosis had not been reported in animals other than humans, we recently determined that two aged vervet monkeys (Chlorocebus pygerythrus) spontaneously developed systemic TTR amyloidosis. In this study here, we first determined that aged vervet monkeys developed TTR amyloidosis and showed cardiac dysfunction but other primates did not. We also found that vervet monkeys had the TTR Ile122 allele, which is well known as a frequent mutation-causing human TTR amyloidosis. Furthermore, we generated recombinant monkey TTRs and determined that the vervet monkey TTR had lower tetrameric stability and formed more amyloid fibrils than did cynomolgus monkey TTR, which had the Val122 allele. We thus propose that the Ile122 allele has an important role in TTR amyloidosis in the aged vervet monkey and that this monkey can serve as a valid pathological model of the human disease. Finally, from the viewpoint of molecular evolution of TTR in primates, we determined that human TTR mutations causing the leptomeningeal phenotype of TTR amyloidosis tended to occur in amino acid residues that showed no diversity throughout primate evolution. Those findings may be valuable for understanding the genotype-phenotype correlation in this inherited human disease.
AB - Mutant forms of transthyretin (TTR) cause the most common type of autosomal-dominant hereditary systemic amyloidosis. In addition, wild-type TTR causes senile systemic amyloidosis, a sporadic disease seen in the elderly. Although spontaneous development of TTR amyloidosis had not been reported in animals other than humans, we recently determined that two aged vervet monkeys (Chlorocebus pygerythrus) spontaneously developed systemic TTR amyloidosis. In this study here, we first determined that aged vervet monkeys developed TTR amyloidosis and showed cardiac dysfunction but other primates did not. We also found that vervet monkeys had the TTR Ile122 allele, which is well known as a frequent mutation-causing human TTR amyloidosis. Furthermore, we generated recombinant monkey TTRs and determined that the vervet monkey TTR had lower tetrameric stability and formed more amyloid fibrils than did cynomolgus monkey TTR, which had the Val122 allele. We thus propose that the Ile122 allele has an important role in TTR amyloidosis in the aged vervet monkey and that this monkey can serve as a valid pathological model of the human disease. Finally, from the viewpoint of molecular evolution of TTR in primates, we determined that human TTR mutations causing the leptomeningeal phenotype of TTR amyloidosis tended to occur in amino acid residues that showed no diversity throughout primate evolution. Those findings may be valuable for understanding the genotype-phenotype correlation in this inherited human disease.
KW - FAP
KW - TTR
KW - amyloidosis
UR - http://www.scopus.com/inward/record.url?scp=84857709687&partnerID=8YFLogxK
U2 - 10.1038/labinvest.2011.195
DO - 10.1038/labinvest.2011.195
M3 - 学術論文
C2 - 22184092
AN - SCOPUS:84857709687
SN - 0023-6837
VL - 92
SP - 474
EP - 484
JO - Laboratory Investigation
JF - Laboratory Investigation
IS - 3
ER -