Advancements in Q-learning meta-heuristic optimization algorithms: A survey

Yang Yang, Yuchao Gao, Zhe Ding*, Jinran Wu*, Shaotong Zhang, Feifei Han, Xuelan Qiu, Shangce Gao, You Gan Wang

*この論文の責任著者

研究成果: ジャーナルへの寄稿総説査読

8 被引用数 (Scopus)

抄録

This paper reviews the integration of Q-learning with meta-heuristic algorithms (QLMA) over the last 20 years, highlighting its success in solving complex optimization problems. We focus on key aspects of QLMA, including parameter adaptation, operator selection, and balancing global exploration with local exploitation. QLMA has become a leading solution in industries like energy, power systems, and engineering, addressing a range of mathematical challenges. Looking forward, we suggest further exploration of meta-heuristic integration, transfer learning strategies, and techniques to reduce state space. This article is categorized under: Technologies > Computational Intelligence Technologies > Artificial Intelligence.

本文言語英語
論文番号e1548
ジャーナルWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
14
6
DOI
出版ステータス出版済み - 2024/11/01

ASJC Scopus 主題領域

  • コンピュータサイエンス一般

フィンガープリント

「Advancements in Q-learning meta-heuristic optimization algorithms: A survey」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル