Addressing the Stability-Plasticity Dilemma in Continual Learning through Dynamic Training Strategies

Qingya Sui, Qiong Fu, Yuki Todo, Jun Tang, Shangce Gao*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

1 被引用数 (Scopus)

抄録

Despite significant progress in learning from static data, modern artificial intelligence still faces challenges in continual learning. The stability-plasticity dilemma is a key issue in continual learning. To address this, we propose a novel continual learning model with three dynamic training strategies (DTCL). DTCL integrates adaptive learning rates, experience replay, and dynamic knowledge distillation. These strategies collectively enhance the network's ability to learn new tasks while preserving information from previous tasks. Experimental results on the CIFAR-100 dataset demonstrate that DTCL significantly outper-forms existing baselines in average accuracy. DTCL also demonstrates significant advantages in the classification of colorectal cancer images, highlighting its potential for addressing real-world medical classification challenges. The dynamic training strategies of DTCL effectively balance stability and plasticity, improving continual learning performance.

本文言語英語
ホスト出版物のタイトルICNSC 2024 - 21st International Conference on Networking, Sensing and Control
ホスト出版物のサブタイトルArtificial Intelligence for the Next Industrial Revolution
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9798350365221
DOI
出版ステータス出版済み - 2024
イベント21st International Conference on Networking, Sensing and Control, ICNSC 2024 - Hangzhou, 中国
継続期間: 2024/10/182024/10/20

出版物シリーズ

名前ICNSC 2024 - 21st International Conference on Networking, Sensing and Control: Artificial Intelligence for the Next Industrial Revolution

学会

学会21st International Conference on Networking, Sensing and Control, ICNSC 2024
国/地域中国
CityHangzhou
Period2024/10/182024/10/20

ASJC Scopus 主題領域

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • 制御と最適化
  • モデリングとシミュレーション
  • 感覚系
  • 器械工学

フィンガープリント

「Addressing the Stability-Plasticity Dilemma in Continual Learning through Dynamic Training Strategies」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル