Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

Chunmei Liu*, Yirui Wang, Shangce Gao

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

4 被引用数 (Scopus)

抄録

This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour.

本文言語英語
論文番号6040232
ジャーナルComputational intelligence and neuroscience
2016
DOI
出版ステータス出版済み - 2016

ASJC Scopus 主題領域

  • コンピュータサイエンス一般
  • 神経科学一般
  • 数学一般

フィンガープリント

「Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル